Experimental Study of Torque-Ripple and its Effect on the Flux Weakening Range of Synchronous Reluctance Machines

Author(s):  
Rajendra Thike ◽  
Pragasen Pillay
Author(s):  
K. Wang ◽  
Z.Q. Zhu ◽  
G. Ombach ◽  
W. Chlebosz

Purpose – The purpose of this paper is to investigate torque ripple and magnetic force on the teeth in interior permanent magnet (IPM) machines over a wide range of speed operation for electrical power steering (EPS) applications. Design/methodology/approach – The flux-weakening capability of IPM machines has been analysed by finite element method considering the effect of cross-coupling between d- and q-axis current. The traditional method of analysing torque ripple is based on constant torque and flux-weakening region. However, the cross-coupling need to be considered when applying this technique to flux-weakening region. Meanwhile, the torque ripple with current amplitude and angle and with different speed in the flux-weakening region is also investigated. In addition, the magnetic force on the teeth due to the separated teeth with stator yoke is also investigated during the constant torque and flux-weakening region. Findings – The torque ripple and magnetic force on teeth in IPM machine are dependent on current and current angle. Both the lowest torque ripple and magnetic force on teeth exist over the whole torque-speed region. Research limitations/implications – The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple and magnetic force on teeth are not considered in this application. The 12-slot/10-pole IPM machine has been employed in this analysis, but this work can be continued to investigate different slot/pole number combinations. Originality/value – This paper has analysed the torque ripple and magnetic force on the teeth in IPM machines for EPS application over a wide range of operation speed, which are the main cause of vibration and acoustic noise. The variation of torque ripple with current amplitude and angle as well as speed in the flux-weakening region is also investigated. In addition, the magnetic force on the teeth is also investigated over the whole torque-speed region.


Author(s):  
Zhaoyuan Zhang ◽  
Chaohui Zhao ◽  
Lisi Tan ◽  
Yao Chen
Keyword(s):  

Author(s):  
Yuliang Wen ◽  
Hanfeng Zheng ◽  
Fang Yang ◽  
Xiaofan Zeng

Abstract Permanent magnet synchronous motor (PMSM) has the advantages of high efficiency, high power density and high reliability. It has been widely used in electric vehicles, rail transit, industrial transmission and other fields. Compared with the traditional PMSM control strategy, the Indirect stator-quantities control (ISC) of low torque ripple induction motor has high dynamic response performance in the whole speed range, with high stability and strong security. However, due to the inherent characteristics of PMSM, there are still some difficulties in applying ISC strategy, such as solving the load angle corresponding to the current torque, realizing the maximum torque per ampere (MTPA) control and flux weakening control method in the stator field oriented control algorithm of PMSM. In this paper, theoretical analysis and discussion are carried out for the above difficulties, and an indirect stator vector control (ISC) method for PMSM is proposed. Finally, combined with the electric drive application platform of electric vehicle, the simulation and experimental results verify that the proposed ISC control strategy of PMSM also has good dynamic and steady-state performance in the whole speed range.


2011 ◽  
Vol 121-126 ◽  
pp. 152-156
Author(s):  
Ming Feng ◽  
Jun Wei Lian ◽  
Yong Li

Under the condition of grease lubrication, the skewed-roller slipping clutch was experimentally studied. The experimental bench was built up and the influences of geometrical parameters and operation conditions on torque ripple and temperature rising were clarified by the experiment, which laid the foundation for practical application of the skewed-roller slipping clutch in grease lubrication.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 460
Author(s):  
Florin Pop-Pîgleşan ◽  
Adrian-Cornel Pop ◽  
Claudia Marțiş

In this paper a side-by-side comparison between synchronous reluctance machines (SynRMs) with concentrated and distributed windings is performed. The characteristics, parameters, and the installation space of a permanent magnet synchronous machine (PMSM) with concentrated windings used in a 13 V automotive cooling fan system (CFMs) are used as requirements and specifications. For that, eight SynRMs with different stator and rotor topologies are investigated and optimized by means of FE-based electromagnetic optimization. Knowing the challenges associated with the development of mechanically stable SynRM rotor structures, for two selected cross-sections in view of being prototyped, designs checks are performed to ensure robust operation at up to two times the required operating speed. The simulated results were verified by means of measurements performed using two different types of loading systems, i.e., with the real ventilator and using a DC machine as a load. Based on this, the relative differences between all three motor technologies in terms of important quantities (e.g., torque-speed characteristic, torque ripple, efficiency, power factor and ultimately the size) are highlighted.


Sign in / Sign up

Export Citation Format

Share Document