Wave transmission through lossy media in the strong localization regime

Author(s):  
V. Freilikher ◽  
M. Pustilnik ◽  
I. Yurkevich
1994 ◽  
Vol 50 (9) ◽  
pp. 6017-6022 ◽  
Author(s):  
V. Freilikher ◽  
M. Pustilnik ◽  
I. Yurkevich

2021 ◽  
Vol 26 (4) ◽  
pp. 344-349
Author(s):  
A. V. Gribovsky ◽  

Purpose: Investigation of the electrodynamic properties of a Fabry-Perot metaresonator formed by two parallel perfectly conducting, two-dimensionally periodic, two-element screens of finite thickness with rectangular holes. The resonator is excited by a plane linearly polarized electromagnetic wave. The basic cell of each of the screens used as the metaresonator mirrors contains two lengths of rectangular waveguides of different transverse sections. Design/methodology/approach: An operator method for solving the 3D problems of electromagnetic wave diffraction by multielement two-dimensionally periodic structures is used in the study. The computation algorithm uses the partial domain technique and the method of generalized scattering matrices. Findings: As follows from the results of the numerical modeling made, the magnitude of the plane wave reflected from the metaresonator turns to zero at fixed frequencies lying below the cutoff frequencies for the rectangular waveguide sections embedded in the resonator mirrors. The effect of the total electromagnetic wave transmission through the metaresonator at the first lower frequency is characterized by a strong localization of the electromagnetic field in the resonator volume. The reason is excitation of the metaresonator by the exponentially descending field penetrating inside the resonator through the evanescent holes at the resonance frequency. The second low-frequency resonance of the total electromagnetic wave transmission through the metaresonator is associated with the trapped-mode resonance, which is observed in multielement two-dimensionally periodic structures. This case is characterized by a strong localization of the electromagnetic field from both sides near the metaresonator mirror surfaces. Conclusions: The unique electrodynamic properties of the metaresonator can find application in the devices for measuring the electrophysical parameters of composite materials with high losses. The effect of strong localization of the electromagnetic field both in the resonator volume and near the mirror surfaces can be used for monitoring the gaseous substances in crowded places. Key words: two-dimensionally periodic screen; rectangular waveguide; Fabry-Perot metaresonator; reflection factor; evanescent waveguide; trapped-mode resonance


2009 ◽  
Vol 29 (8) ◽  
pp. 2210-2212
Author(s):  
Shi-yue LAI ◽  
Xiao-feng LIAO ◽  
Qing ZHOU

2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Cenk Yanik ◽  
Vahid Sazgari ◽  
Abdulkadir Canatar ◽  
Yaser Vaheb ◽  
İsmet İ. Kaya

Author(s):  
Marta Gil ◽  
Paris Velez ◽  
Francisco Aznar-Ballesta ◽  
Aran Mesenger-Ruiz ◽  
Jonatan Munoz-Enano ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 738
Author(s):  
Jan Gimsa

A new expression for the dielectrophoresis (DEP) force is derived from the electrical work in a charge-cycle model that allows the field-free transition of a single object between the centers of two adjacent cubic volumes in an inhomogeneous field. The charging work for the capacities of the volumes is calculated in the absence and in the presence of the object using the external permittivity and Maxwell-Wagner’s mixing equation, respectively. The model provides additional terms for the Clausius-Mossotti factor, which vanish for the mathematical boundary transition toward zero volume fraction, but which can be interesting for narrow microfluidic systems. The comparison with the classical solution provides a new perspective on the notorious problem of electrostatic modeling of AC electrokinetic effects in lossy media and gives insight into the relationships between active, reactive, and apparent power in DEP force generation. DEP moves more highly polarizable media to locations with a higher field, making a DEP-related increase in the overall polarizability of suspensions intuitive. Calculations of the passage of single objects through a chain of cubic volumes show increased overall effective polarizability in the system for both positive and negative DEP. Therefore, it is proposed that DEP be considered a conditioned polarization mechanism, even if it is slow with respect to the field oscillation. The DEP-induced changes in permittivity and conductivity describe the increase in the overall energy dissipation in the DEP systems consistent with the law of maximum entropy production. Thermodynamics can help explain DEP accumulation of small objects below the limits of Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document