Directional effect on thermal infrared measurements over 2D heterogeneous land surface in remote sensing

Author(s):  
L. Coret ◽  
X. Briottet ◽  
Y.H. Kerr ◽  
G. Chehbouni
2021 ◽  
Author(s):  
Jennifer Sobiech-Wolf ◽  
Tobias Ullmann ◽  
Wolfgang Dierking

<p>Satellite remote sensing as well as in-situ measurements are common tools to monitor the state of Arctic environments. However, remote sensing products often lack sufficient temporal and/or spatial resolution, and in-situ measurements can only describe the environmental conditions on a very limited spatial scale. Therefore, we conducted an air-borne campaign to connect the detailed in-situ data with poor spatial coverage to coarse satellite images. The SMART campaign is part of the ongoing project „Characterization of Polar Permafrost Landscapes by Means of Multi-Temporal and Multi-Scale Remote Sensing, and In-Situ Measurements“, funded by the German Research Foundation (DFG).  The focus of the project is to close the gap between in-situ measurements and space-borne images in polar permafrost landscapes. The airborne campaign SMART was conducted in late summer 2018 in north-west Canada, focussing on the Mackenzie-Delta region, which is underlain by permafrost and rarely inhabited. The land cover is either dominated by open Tundra landscapes or by boreal forests. The Polar-5 research-aircraft from the Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Germany, was equipped with a ground penetrating radar, a hyperspectral camara, a laserscanner, and an infrared temperature sensor amongst others. In parallel to the airborne acquisition, a team collected in-situ data on ground, including manual active layer depth measurements, geophysical surveying using 2D Electric Resistivity Tomography (ERT), GPR, and mapping of additional land cover properties. The database was completed by a variety of satellite data from different platforms, e.g. MODIS, Landsat, TerraSAR-X and Sentinel-1.  As part of the project, we analysed the performance of MODIS Land surfaces temperature products compared to our air-borne infrared measurements and evaluated, how long the land surface temperatures of this Arctic environment can be considered as stable. It turned out that the MODIS data differ up to 2°C from the air-borne measurements. If this is due to the spatial difference of the measurements or a result of data processing of the MODIS LST products is part of ongoing analysis.</p>


2021 ◽  
Vol 13 (9) ◽  
pp. 1765
Author(s):  
Juan M. Sánchez ◽  
César Coll ◽  
Raquel Niclòs

The combination of the state-of-the-art in the thermal infrared (TIR) domain [...]


2006 ◽  
Vol 7 (3) ◽  
pp. 404-420 ◽  
Author(s):  
Benoit Coudert ◽  
Catherine Ottlé ◽  
Brice Boudevillain ◽  
Jérôme Demarty ◽  
Pierre Guillevic

Abstract This study fits within the overall research on the usage of space remote sensing data to constrain land surface models (LSMs) (also called SVAT models for soil–vegetation–atmosphere transfer). The goal of this paper is to analyze the potential of using thermal infrared (TIR) remote sensing data for LSM calibration. LSMs are characterized by a large number of parameters and initial conditions that have to be specified. This model calibration is generally performed at a local scale by minimization between measurements and time series difference. Recent studies have shed light on the use of multiobjective approaches for performing calibration and for analyzing the model’s sensitivity to input parameters. Such an approach has been implemented in the SEtHyS LSM (for “Suivi de l’Etat Hydrique des Sols,” the French acronym for soil moisture monitoring) with the objective of assessing the information contributed by having knowledge of the remote sensing surface brightness temperature. For this purpose, the model calibration was performed in three different cases at field scale corresponding to different calibration design. The analysis of these numerical experiments permits the authors to show the contribution and the limits of TIR remote sensing data for LSM calibration, in various environmental conditions. The perspectives underline the potential of using a dynamic calibration methodology, taking advantage of the time-varying model parameters’ influence.


Sign in / Sign up

Export Citation Format

Share Document