The Need for Multi-Source, Multi-Scale Hyperspectral Imaging to Boost Non-Invasive Mineral Exploration

Author(s):  
Richard Gloaguen ◽  
Pedram Ghamisi ◽  
Sandra Lorenz ◽  
Moritz Kirsch ◽  
Robert Zimmermann ◽  
...  
2019 ◽  
Vol 29 (1) ◽  
pp. 415-438 ◽  
Author(s):  
Leilei Huang ◽  
Gongwen Wang ◽  
Emmanuel John M. Carranza ◽  
Jingguo Du ◽  
Junjian Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binu Melit Devassy ◽  
Sony George

AbstractDocumentation and analysis of crime scene evidences are of great importance in any forensic investigation. In this paper, we present the potential of hyperspectral imaging (HSI) to detect and analyze the beverage stains on a paper towel. To detect the presence and predict the age of the commonly used drinks in a crime scene, we leveraged the additional information present in the HSI data. We used 12 different beverages and four types of paper hand towel to create the sample stains in the current study. A support vector machine (SVM) is used to achieve the classification, and a convolutional auto-encoder is used to achieve HSI data dimensionality reduction, which helps in easy perception, process, and visualization of the data. The SVM classification model was re-established for a lighter and quicker classification model on the basis of the reduced dimension. We employed volume-gradient-based band selection for the identification of relevant spectral bands in the HSI data. Spectral data recorded at different time intervals up to 72 h is analyzed to trace the spectral changes. The results show the efficacy of the HSI techniques for rapid, non-contact, and non-invasive analysis of beverage stains.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Klara Retko ◽  
Maša Kavčič ◽  
Lea Legan ◽  
Polonca Ropret ◽  
Bojana Rogelj Škafar ◽  
...  

AbstractIn this study, a painted beehive panel from the collection of the Slovene Ethnographic Museum was examined with respect to its material composition with the aim to reveal the painting technique. Due to the state of degradation due to outdoor weathering (UV irradiation, rainfall, extreme temperature and humidity fluctuations), as well as past conservation interventions, the object represented a complex analytical challenge. We aimed for non-invasive techniques (FTIR in reflection mode, Raman spectroscopy and hyperspectral imaging in the range of 400–2500 nm); however, in order to explore paint layers, cross-sections were also analysed using Raman spectroscopy. FTIR spectroscopy in transmission mode and gas chromatography coupled to mass spectrometry were also used on sample fragments. Various original materials were identified such as pigments and binders. The surface coating applied during conservation interventions was also characterised. Additionally, organic compounds were found (oxalate, carboxylate), representing transformation products. The potential use of Prussian blue as a background paint layer is discussed.


2021 ◽  
Author(s):  
R. Booysen ◽  
S. Lorenz ◽  
M. Kirsch ◽  
R. Jackisch ◽  
R. Zimmermann ◽  
...  

2015 ◽  
Vol 121 (3) ◽  
pp. 891-901 ◽  
Author(s):  
T. Vitorino ◽  
A. Casini ◽  
C. Cucci ◽  
M. J. Melo ◽  
M. Picollo ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Aurélie Mounier ◽  
Gwénaëlle Le Bourdon ◽  
Christian Aupetit ◽  
Colette Belin ◽  
Laurent Servant ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Y Tan ◽  
S B Mahbub ◽  
C A Campugan ◽  
J Campbell ◽  
A Habibalahi ◽  
...  

Abstract Study question Can we separate between control and reversine-treated cells within the inner cell mass (ICM) of the mouse preimplantation embryo by using label-free and non-invasive hyperspectral microscopy? Summary answer Hyperspectral microscopy is able to discern between control and reversine-treated cells using cellular autofluorescence in the complete absence of fluorescence tags. What is known already Embryo mosaicism (containing cells that are euploid (46 chromosomes) and aneuploid (deviation from the expected number of chromosomes)) affects up to 17.3% of human blastocyst embryos. Current diagnosis of aneuploidy in the IVF clinic involves a biopsy of trophectoderm (TE) cells or spent media followed by sequencing. In some blastocyst embryos these approaches will fail to diagnose of the proportion of aneuploid cells within the fetal lineage (ICM). Study design, size, duration The impact of aneuploidy on cellular metabolism was assessed by using cellular autofluoresence and hyperspectral microscopy (broad spectral profile). Two models were employed: (i) Primary human fibroblast cells with known karyotypes (4-6 independent replicates, euploid n = 467; aneuploid n = 969) and reversine induced aneuploidy in mouse embryos (5-8 independent replicates, 30-44 cells per group). Both models were subjected to hyperspectral imaging to quantify native cell fluorescence. Participants/materials, setting, methods The human model is comprised of euploid (male and female) and aneuploid (triploid and trisomies: 13, 18, 21, XXX, and XXY) primary human fibroblast cells. For the mouse model, we treated embryos with reversine, a reversible spindle assembly checkpoint inhibitor, during the 4- to 8-cell division. Individual blastomeres were dissociated from control and reversine treated 8-cell embryos. Blastomeres were either imaged directly or used to generate chimeric blastocysts with differing ratios of control:reversine-treated cells. Main results and the role of chance Following unsupervised linear unmixing, the relative abundance of metabolic cofactors was quantified: reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavins with the subsequent calculation of the optical redox ratio (ORR: Flavins/[NAD(P)H + Flavins]). Primary human fibroblast cells displayed an increase in the relative abundance of NAD(P)H with a decrease in flavins, leading to a significant reduction in the ORR for aneuploid cells (P < 0.05). The mouse embryos displayed an identical trend as the human model between control and reversine-treated embryos. Mathematical algorithms were applied and able to distinguish between (i) euploid and aneuploid primary human fibroblast cells, (ii) control and reversine-treated mouse blastomeres and (iii) chimeric blastocysts with differing ratios of control and reversine-treated cells. The accuracy of these separations was supported by receiver operating characteristic curves with areas under the curve. We also showed that hyperspectral imaging of the preimplantation embryo does not impact on embryo developmental competence, pregnancy outcome and offspring health in a mouse model. We believe the role of chance is low as both human somatic cells and mouse embryos showed a consistent shift in cellular metabolism in response to human fibroblast cells that are aneuploid and reversine treated mouse embryos. Limitations, reasons for caution Further validation of our approach could include sequencing of the ICM of individual blastocysts to determine the proportion of aneuploid cells in ICM and correlate this with the metabolic profile obtained through hyperspectral imaging. Wider implications of the findings With hyperspectral imaging able to discriminate between (i) euploid and aneuploid human fibroblast cells and (ii) control and reversine-treated mouse embryos, this could be an accurate, non-invasive and label-free optical imaging approach to assess mosaicism within the ICM of mouse embryos, potentially leading to a new diagnostic tool for embryos. Trial registration number Not applicable


2021 ◽  
Vol 2 (43) ◽  
pp. 54-61
Author(s):  
Dmitriy A. Burynin ◽  
◽  
Aleksandr A. Smirnov

Portable spectroradiometers and hyperspectral cameras are increasingly being used to quickly assess the physiological state of plants. The operation of these devices is based on the registration of reflection or reflection and transmission spectra. (Research purpose) The research purpose is in analyzing the technical means and methods of non-invasive monitoring of the plant state based on the registration of the reflection spectra of leaves. (Materials and methods) The article presents a review of the work on the application of hyperspectral imaging methods. Authors classified and analyzed materials on spectroscopic radiometers and hyperspectral cameras, and outlined the prospects for implementation. Authors applied the methods of a systematic approach to the research problem. (Results and discussion) Hyperspectral imaging methods serve as an effective means of monitoring plants. It is possible to determine the pigment composition of plants, lack of nutrition, and detect biotic stress through hyperspectral imaging. The article presents methods of application of portable spectroradiometers and hyperspectral cameras. With the help of these devices it is possible to carry out measurements with high spectral resolution. The difficulty of accurately detecting the content of pigments in the leaves lies in the mutual overlap of the areas of light absorption by them. The main drawback of spectroradiometers is that they measure only at one point on a single sheet. The article presents the difficulties encountered in interpreting the results obtained by the hyperspectral camera. The background reflectivity of the soil, the geometry of the vegetation cover, and the uneven lighting can make errors in the measurements. (Conclusions) The article presents the disadvantages of the hyperspectral imaging method when using only the reflection spectrum. In order to increase the accuracy of the determination of pigments and stresses of various origins, it is necessary to develop a portable device that combines the methods of recording reflection and fluorescence.


2011 ◽  
Vol 12 (4) ◽  
pp. 326-334 ◽  
Author(s):  
David T. Dicker ◽  
Nadia Kahn ◽  
Keith T. Flaherty ◽  
Jeremy Lerner ◽  
Wafik S. El-Deiry

Sign in / Sign up

Export Citation Format

Share Document