scholarly journals Forensic analysis of beverage stains using hyperspectral imaging

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binu Melit Devassy ◽  
Sony George

AbstractDocumentation and analysis of crime scene evidences are of great importance in any forensic investigation. In this paper, we present the potential of hyperspectral imaging (HSI) to detect and analyze the beverage stains on a paper towel. To detect the presence and predict the age of the commonly used drinks in a crime scene, we leveraged the additional information present in the HSI data. We used 12 different beverages and four types of paper hand towel to create the sample stains in the current study. A support vector machine (SVM) is used to achieve the classification, and a convolutional auto-encoder is used to achieve HSI data dimensionality reduction, which helps in easy perception, process, and visualization of the data. The SVM classification model was re-established for a lighter and quicker classification model on the basis of the reduced dimension. We employed volume-gradient-based band selection for the identification of relevant spectral bands in the HSI data. Spectral data recorded at different time intervals up to 72 h is analyzed to trace the spectral changes. The results show the efficacy of the HSI techniques for rapid, non-contact, and non-invasive analysis of beverage stains.

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5481 ◽  
Author(s):  
Beatriz Martinez ◽  
Raquel Leon ◽  
Himar Fabelo ◽  
Samuel Ortega ◽  
Juan F. Piñeiro ◽  
...  

Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5–465.96 nm, 498.71–509.62 nm, 556.91–575.1 nm, 593.29–615.12 nm, 636.94–666.05 nm, 698.79–731.53 nm and 884.32–902.51 nm.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 97 ◽  
Author(s):  
Siddharth Chaudhary ◽  
Sarawut Ninsawat ◽  
Tai Nakamura

The aim of this study was to investigate the potential of the non-destructive hyperspectral imaging system (HSI) and accuracy of the model developed using Support Vector Machine (SVM) for determining trace detection of explosives. Raman spectroscopy has been used in similar studies, but no study has been published which is based on measurement of reflectance from hyperspectral sensor for trace detection of explosives. HSI used in this study has an advantage over existing techniques due to its combination of imaging system and spectroscopy, along with being contactless and non-destructive in nature. Hyperspectral images of the chemical were collected using the BaySpec hyperspectral sensor which operated in the spectral range of 400–1000 nm (144 bands). Image processing was applied on the acquired hyperspectral image to select the region of interest (ROI) and to extract the spectral reflectance of the chemicals which were stored as spectral library. Principal Component Analysis (PCA) and first derivative was applied to reduce the high dimensionality of the image and to determine the optimal wavelengths between 400 and 1000 nm. In total, 22 out of 144 wavelengths were selected by analysing the loadings of principal components (PC). SVM was used to develop the classification model. SVM model established on the whole spectrum from 400 to 1000 nm achieved an accuracy of 81.11%, whereas an accuracy of 77.17% with less computational load was achieved when SVM model was established on the optimal wavelengths selected. The results of the study demonstrate that the hyperspectral imaging system along with SVM is a promising tool for trace detection of explosives.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Janša ◽  
T. Klančič ◽  
M. Pušić ◽  
M. Klein ◽  
E. Vrtačnik Bokal ◽  
...  

AbstractEndometriosis is a common non-malignant gynecological disease that significantly compromises fertility and quality of life of the majority of patients. The gold standard for diagnosis is visual inspection of the pelvic organs by surgical laparoscopy and there are no biomarkers that would allow non-invasive diagnosis. The pathogenesis of endometriosis is not completely understood, thus analysis of peritoneal fluid might contribute in this respect. Our prospective case–control study included 58 patients undergoing laparoscopy due to infertility, 32 patients with peritoneal endometriosis (cases) and 26 patients with unexplained primary infertility (controls). Discovery proteomics using antibody microarrays that covered 1360 proteins identified 16 proteins with different levels in cases versus the control patients. The validation using an ELISA approach confirmed significant differences in the levels of cartilage oligomeric matrix protein (COMP) and transforming growth factor-β-induced protein ig-h3 (TGFBI) and nonsignificant differences in angiotensinogen (AGT). A classification model based on a linear support vector machine revealed AUC of > 0.83, sensitivity of 0.81 and specificity of 1.00. Differentially expressed proteins represent candidates for diagnostic and prognostic biomarkers or drug targets. Our findings have brought new knowledge that will be helpful in the understanding of the pathophysiology of endometriosis and warrant further studies in blood samples.


2020 ◽  
Vol 10 (19) ◽  
pp. 6724
Author(s):  
Youngwook Seo ◽  
Ahyeong Lee ◽  
Balgeum Kim ◽  
Jongguk Lim

(1) Background: The general use of food-processing facilities in the agro-food industry has increased the risk of unexpected material contamination. For instance, grain flours have similar colors and shapes, making their detection and isolation from each other difficult. Therefore, this study is aimed at verifying the feasibility of detecting and isolating grain flours by using hyperspectral imaging technology and developing a classification model of grain flours. (2) Methods: Multiple hyperspectral images were acquired through line scanning methods from reflectance of visible and near-infrared wavelength (400–1000 nm), reflectance of shortwave infrared wavelength (900–1700 nm), and fluorescence (400–700 nm) by 365 nm ultraviolet (UV) excitation. Eight varieties of grain flours were prepared (rice: 4, starch: 4), and the particle size and starch damage content were measured. To develop the classification model, four multivariate analysis methods (linear discriminant analysis (LDA), partial least-square discriminant analysis, support vector machine, and classification and regression tree) were implemented with several pre-processing methods, and their classification results were compared with respect to accuracy and Cohen’s kappa coefficient obtained from confusion matrices. (3) Results: The highest accuracy was achieved as 97.43% through short-wavelength infrared with normalization in the spectral domain. The submission of the developed classification model to the hyperspectral images showed that the fluorescence method achieves the highest accuracy of 81% using LDA. (4) Conclusions: In this study, the potential of non-destructive classification of rice and starch flours using multiple hyperspectral modalities and chemometric methods were demonstrated.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ugur Parlatan ◽  
Medine Tuna Inanc ◽  
Bahar Yuksel Ozgor ◽  
Engin Oral ◽  
Ercan Bastu ◽  
...  

AbstractEndometriosis is a condition in which the endometrium, the layer of tissue that usually covers the inside of the uterus, grows outside the uterus. One of its severe effects is sub-fertility. The exact reason for endometriosis is still unknown and under investigation. Tracking the symptoms is not sufficient for diagnosing the disease. A successful diagnosis can only be made using laparoscopy. During the disease, the amount of some molecules (i.e., proteins, antigens) changes in the blood. Raman spectroscopy provides information about biochemicals without using dyes or external labels. In this study, Raman spectroscopy is used as a non-invasive diagnostic method for endometriosis. The Raman spectra of 94 serum samples acquired from 49 patients and 45 healthy individuals were compared for this study. Principal Component Analysis (PCA), k- Nearest Neighbors (kNN), and Support Vector Machines (SVM) were used in the analysis. According to the results (using 80 measurements for training and 14 measurements for the test set), it was found that kNN-weighted gave the best classification model with sensitivity and specificity values of 80.5% and 89.7%, respectively. Testing the model with unseen data yielded a sensitivity value of 100% and a specificity value of 100%. To the best of our knowledge, this is the first study in which Raman spectroscopy was used in combination with PCA and classification algorithms as a non-invasive method applied on blood sera for the diagnosis of endometriosis.


2020 ◽  
Author(s):  
Anna Siedliska ◽  
Piotr Baranowski ◽  
Joanna Pastuszka-Woźniak ◽  
Monika Zubik ◽  
Jaromir Krzyszczak

Abstract Background: Modern agriculture strives to sustainably manage fertilizer for both economic and environmental reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a challenge for precision farming technology. A study was carried out on three species of popular crops, celery (Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive detection of P content. Results: Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The measurements performed using hyperspectral imaging, obtained in several different stages of plant development, were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus fertilization and the mass of the leaf/roots of the plants. Conclusions: Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.


2020 ◽  
Author(s):  
Anna Siedliska ◽  
Piotr Baranowski ◽  
Joanna Pastuszka-Woźniak ◽  
Monika Zubik ◽  
Jaromir Krzyszczak

Abstract Background: Modern agriculture strives to sustainably manage fertilizer for both economic and environmental reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a challenge for precision farming technology. A study was carried out on three species of popular crops, celery (Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive detection of P content. Results: Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The measurements performed using hyperspectral imaging, obtained in several different stages of plant development, were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus fertilization and the mass of the leaf/roots of the plants. Conclusions: Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.


2021 ◽  
Vol 13 (18) ◽  
pp. 3595
Author(s):  
Piyush Pandey ◽  
Kitt G. Payn ◽  
Yuzhen Lu ◽  
Austin J. Heine ◽  
Trevor D. Walker ◽  
...  

Loblolly pine is an economically important timber species in the United States, with almost 1 billion seedlings produced annually. The most significant disease affecting this species is fusiform rust, caused by Cronartium quercuum f. sp. fusiforme. Testing for disease resistance in the greenhouse involves artificial inoculation of seedlings followed by visual inspection for disease incidence. An automated, high-throughput phenotyping method could improve both the efficiency and accuracy of the disease screening process. This study investigates the use of hyperspectral imaging for the detection of diseased seedlings. A nursery trial comprising families with known in-field rust resistance data was conducted, and the seedlings were artificially inoculated with fungal spores. Hyperspectral images in the visible and near-infrared region (400–1000 nm) were collected six months after inoculation. The disease incidence was scored with traditional methods based on the presence or absence of visible stem galls. The seedlings were segmented from the background by thresholding normalized difference vegetation index (NDVI) images, and the delineation of individual seedlings was achieved through object detection using the Faster RCNN model. Plant parts were subsequently segmented using the DeepLabv3+ model. The trained DeepLabv3+ model for semantic segmentation achieved a pixel accuracy of 0.76 and a mean Intersection over Union (mIoU) of 0.62. Crown pixels were segmented using geometric features. Support vector machine discrimination models were built for classifying the plants into diseased and non-diseased classes based on spectral data, and balanced accuracy values were calculated for the comparison of model performance. Averaged spectra from the whole plant (balanced accuracy = 61%), the crown (61%), the top half of the stem (77%), and the bottom half of the stem (62%) were used. A classification model built using the spectral data from the top half of the stem was found to be the most accurate, and resulted in an area under the receiver operating characteristic curve (AUC) of 0.83.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anna Siedliska ◽  
Piotr Baranowski ◽  
Joanna Pastuszka-Woźniak ◽  
Monika Zubik ◽  
Jaromir Krzyszczak

Abstract Background Modern agriculture strives to sustainably manage fertilizer for both economic and environmental reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a challenge for precision farming technology. A study was carried out on three species of popular crops, celery (Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive detection of P content. Results Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The measurements performed using hyperspectral imaging, obtained in several different stages of plant development, were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus fertilization and the mass of the leaf/roots of the plants. Conclusions Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.


2017 ◽  
Vol 71 (10) ◽  
pp. 2286-2301 ◽  
Author(s):  
Dong Yang ◽  
Dandan He ◽  
Anxiang Lu ◽  
Dong Ren ◽  
Jihua Wang

The freshness of meat products during storage has received unprecedented attention. This study was conducted to investigate the feasibility of a hyperspectral imaging (HSI) technique to determine the freshness state of cooked beef during storage and identify the contaminated areas on the surface of spoiled samples. Hyperspectral images of cooked beef were acquired in the wavelength range of 400–1000 nm and the freshness state of all samples was divided into three classes (freshness, medium freshness, and spoilage) using the measured total viable count (TVC) of bacteria. Fifteen feature spectra variables were extracted by random frog (RF); based on this, six optimal wavelength variables were further selected by correlation analysis (CA). Partial least squares (PLS) and least squares–support vector machine (LS-SVM) classification models were established using different spectral variables. The results indicated that the performance of the RF-CA-LS-SVM classification model with a high overall classification accuracy of 97.14%, the results of sensitivity and specificity in the range of 0.92–1, and the κ coefficient of 0.9575 in the prediction set were obviously superior to other models. Spoiled samples were further obtained using a RF-CA-LS-SVM model, and then six feature images were extracted and further fused by principal component analysis (PCA). A PC3 image was used to segment successfully the contaminated areas from normal areas of cooked beef images using the Otsu threshold algorithm. The results demonstrated that HSI has great potential in classifying the freshness of cooked beef and identifying the contaminated areas. This current study provides a foundational basis for the classification and grading of meat production in further online detection.


Sign in / Sign up

Export Citation Format

Share Document