Latitudinal Variation of Cloud Effective Radius and Aerosol Optical Depth from MODIS Data

Author(s):  
Neel Sarkar ◽  
Arijit De
2021 ◽  
Author(s):  
Ilaria Petracca ◽  
Davide De Santis ◽  
Stefano Corradini ◽  
Lorenzo Guerrieri ◽  
Matteo Picchiani ◽  
...  

<p>When an eruption event occurs it is necessary to accurately and rapidly determine the position and evolution during time of the volcanic cloud and its parameters (such as Aerosol Optical Depth-AOD, effective radius-Re and mass-Ma of the ash particles), in order to ensure the aviation security and the prompt management of the emergencies.</p><p>Here we present different procedures for volcanic ash cloud detection and retrieval using S3 SLSTR (Sentinel-3 Sea and Land Surface Temperature Radiometer) data collected the 22 June at 00:07 UTC by the Sentinel-3A platform during the Raikoke (Kuril Islands) 2019 eruption.</p><p>The volcanic ash detection is realized by applying an innovative machine learning based algorithm, which uses a MultiLayer Perceptron Neural Network (NN) to classify a SLSTR image in eight different surfaces/objects, distinguishing volcanic and weather clouds, and the underlying surfaces. The results obtained with the NN procedure have been compared with two consolidated approaches based on an RGB channels combination in the visible (VIS) spectral range and the Brightness Temperature Difference (BTD) procedure that exploits the thermal infrared (TIR) channels centred at 11 and 12 microns (S8 and S9 SLSTR channels respectively). The ash volcanic cloud is correctly identified by all the models and the results indicate a good agreement between the NN classification approach, the VIS-RGB and BTD procedures.</p><p>The ash retrieval parameters (AOD, Re and Ma) are obtained by applying three different algorithms, all exploiting the volcanic cloud “mask” obtained from the NN detection approach. The first method is the Look Up Table (LUT<sub>p</sub>) procedure, which uses a Radiative Transfer Model (RTM) to simulate the Top Of Atmosphere (TOA) radiances in the SLSTR thermal infrared channels (S8, S9), by varying the aerosol optical depth and the effective radius. The second algorithm is the Volcanic Plume Retrieval (VPR), based on a linearization of the radiative transfer equation capable to retrieve, from multispectral satellite images, the abovementioned parameters. The third approach is a NN model, which is built on a training set composed by the inputs-outputs pairs TOA radiances vs. ash parameters. The results of the three retrieval methods have been compared, considering as reference the LUT<sub>p</sub> procedure, since that it is the most consolidated approach. The comparison shown promising agreement between the different methods, leading to the development of an integrated approach for the monitoring of volcanic ash clouds using SLSTR.</p><p>The results presented in this work have been obtained in the sphere of the VISTA (Volcanic monItoring using SenTinel sensors by an integrated Approach) project, funded by ESA and developed within the EO Science for Society framework [https://eo4society.esa.int/projects/vista/].</p>


2019 ◽  
Vol 19 (13) ◽  
pp. 8879-8896 ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Johannes Quaas ◽  
Yan Yin ◽  
Tom Qiu

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) C6 L3, Clouds and the Earth's Radiant Energy System (CERES) Edition-4 L3 products, and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data are employed to systematically study aerosol–cloud correlations over three anthropogenic aerosol regions and their adjacent oceans, as well as explore the effect of retrieval artifacts and underlying physical mechanisms. This study is confined to warm phase and single-layer clouds without precipitation during the summertime (June, July, and August). Our analysis suggests that cloud effective radius (CER) is positively correlated with aerosol optical depth (AOD) over land (positive slopes), but negatively correlated with aerosol index (AI) over oceans (negative slopes) even with small ranges of liquid water path (quasi-constant). The changes in albedo at the top of the atmosphere (TOA) corresponding to aerosol-induced changes in CER also lend credence to the authenticity of this opposite aerosol–cloud correlation between land and ocean. It is noted that potential artifacts, such as the retrieval biases of both cloud (partially cloudy and 3-D-shaped clouds) and aerosol, can result in a serious overestimation of the slope of CER–AOD/AI. Our results show that collision–coalescence seems not to be the dominant cause for positive slope over land, but the increased CER caused by increased aerosol might further increase CER by initializing collision–coalescence, generating a positive feedback. By stratifying data according to the lower tropospheric stability and relative humidity near cloud top, it is found that the positive correlations more likely occur in the case of drier cloud top and stronger turbulence in clouds, while negative correlations occur in the case of moister cloud top and weaker turbulence in clouds, which implies entrainment mixing might be a possible physical interpretation for such a positive CER–AOD slope.


2013 ◽  
Vol 128 ◽  
pp. 234-245 ◽  
Author(s):  
Linlu Mei ◽  
Yong Xue ◽  
Gerrit de Leeuw ◽  
Wolfgang von Hoyningen-Huene ◽  
Alexander A. Kokhanovsky ◽  
...  

Author(s):  
Alyson McPhetres ◽  
Srijan Aggarwal

The air quality monitoring network in Alaska is currently limited to ground-based observations in urban areas and national parks leaving a large proportion of the state unmonitored. The use of MODIS aerosol optical depth (AOD) to estimate ground-level particulate pollution concentrations has been successfully demonstrated around the world, and could potentially be used in Alaska. In this work, MODIS AOD measurements at 550 nm were validated against AOD derived from AERONET ground-based sunphotometers in Barrow and Bonanza Creek to determine if MODIS AOD from the Terra and Aqua satellites could be used to estimate ground-level particulate pollution concentrations. The MODIS AOD was obtained from MODIS collection 6 using the dark target Land and Ocean algorithms from 2000 to 2014. MODIS data could only be obtained between the months of April and October; therefore, it could only be validated for those months. Individual and combined Terra and Aqua MODIS data were considered. The results showed that MODIS collection 6 products at 10 km resolution for Terra and Aqua combined are not valid over land but are valid over the ocean. On the other hand, the individual Terra and Aqua MODIS collection 6 AOD products at 10 km resolution are valid over land individually but not when combined. Results also suggest the MODIS collection 6 AOD products at 3 km resolution are valid over land and ocean and perform better over land than the 10-km product. These findings indicate that MODIS collection 6 AOD products can be used quantitatively in air quality applications in Alaska during the summer months.


2006 ◽  
Vol 6 (3) ◽  
pp. 3757-3799 ◽  
Author(s):  
T. Storelvmo ◽  
J. E. Kristjansson ◽  
G. Myhre ◽  
M. Johnsrud ◽  
F. Stordal

Abstract. The indirect effect of aerosols via liquid clouds is investigated by comparing aerosol and cloud characteristics from the Global Climate Model CAM-Oslo to those observed by the MODIS instrument onboard the TERRA and AQUA satellites (http://modis.gsfc.nasa.gov). The comparison is carried out for 15 selected regions ranging from remote and clean to densely populated and polluted. For each region, the regression coefficient and correlation coefficient for the following parameters are calculated: Aerosol Optical Depth vs. Liquid Cloud Optical Thickness, Aerosol Optical Depth vs. Liquid Cloud Droplet Effective Radius and Aerosol Optical Depth vs. Cloud Liquid Water Path. Modeled and observed correlation coefficients and regression coefficients are then compared for a 3-year period starting in January 2001. Additionally, global maps for a number of aerosol and cloud parameters crucial for the understanding of the aerosol indirect effect are compared for the same period of time. Significant differences are found between MODIS and CAM-Oslo both in the regional and global comparison. However, both the model and the observations show a positive correlation between Aerosol Optical Depth and Cloud Optical Depth in practically all regions and for all seasons, in agreement with the current understanding of aerosol-cloud interactions. The correlation between Aerosol Optical Depth and Liquid Cloud Droplet Effective Radius is variable both in the model and the observations. However, the model reports the expected negative correlation more often than the MODIS data. Aerosol Optical Depth is overall positively correlated to Cloud Liquid Water Path both in the model and the observations, with a few regional exceptions.


2014 ◽  
Vol 8 (1) ◽  
pp. 084591 ◽  
Author(s):  
Linyan Bai ◽  
Jianzhong Feng ◽  
Jiahua Zhang ◽  
Xiaonan Mi ◽  
Lanwei Zhu

Sign in / Sign up

Export Citation Format

Share Document