Open Water Season Changes Over the Kara Sea Coastal Zone: Marresalya Example

Author(s):  
P.A. Shabanov ◽  
N.N. Shabanova
Keyword(s):  
2021 ◽  
Author(s):  
Gennadii Borisenko ◽  
Alexander Polukhin ◽  
Valentina Sergeeva

<p>In the frames of the scientific program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, comprehensive studies of the bays of the Novaya Zemlya archipelago (NZA) were carried out. There is very little information in the scientific literature on the dynamics and hydrochemical structure of the waters of the bays. Our investigations have revealed that the concentration of nutrients (first of all, nitrates and silicate) in the bays of NZA was higher than in the surrounding water area of ​​the Kara Sea. The most well studied and open for investigations is the Blagopoluchiya Bay in the northern island of NZA. Blagopoluchiya Bay is a fjord-type bay with several streams of the glacier origin.</p><p>The concentrations of nutrients (N, P, Si, C) in the streams were observed in August-September (0-1.53 µM of PO<sub>4</sub><sup>3-</sup>, 6.4-50.2 µM of SiO<sub>3</sub><sup>2-</sup>, 0.6-11.2 µM of NO<sub>2</sub><sup>-</sup>+NO<sub>3</sub><sup>-</sup>, 732-4815 µM of DIC). The observed content of nutrients in the waters of the bay was on average 2 times lower, but not lower than the level limiting the development of phytoplankton.</p><p>We suppose that high concentrations of nutrients in NZA bays in August-September were supported by increasing glacial runoff from NZA during the summer open water period and the removal of products of degradation of shore rocks with it. Despite the constant enrichment of nutrients, the concentration of phytoplankton in Blagopoluchiya Bay was extremely low (0.2-0.7 mkgC/l) in comparison with the adjacent marine part of the Kara Sea in all years of research.  Perhaps it was due to osmostress of planktonic algae during desalination of the bay by the NZA runoff.</p><p>This work was supported by the State Agreement of The Ministry of Science and Education of Russian Federation (theme №0128-2019-0008); Russian Foundation for Basic Research project 18-05-60069 (processing hydrochemistry data); Russian Scientific Foundation project 19-17-00196 (data obtaining); by the Grant of the President of the Russian Federation MK-860.2020.5 (processing carbonate chemistry data).</p>


2021 ◽  
Author(s):  
Uliana Kazakova ◽  
Alexander Polukhin

<p>The Kara Sea receives about 55 % of the total continental runoff to the Siberian Arctic. Water of the Yenisei and Ob Rivers with low salinity (mineralization), flowing into the sea, forms a surface desalinated layer. The desalinated layer spreads over the sea area under the influence of hydrological and meteorological factors. Meltwater generated by the melting of marine and riverine ice and precipitation contribute to the formation of a surface desalinated layer along with continental runoff.</p><p>Determining the amount of fresh water is not accurate enough if only the salinity of surface water is considered. It is possible to identify riverine water and meltwater using hydrochemical proxies. The ratio of the major ions in seawater differs from that in riverine and meltwater. River waters are characterized by an increased content of silicate and reduced values of total alkalinity. At the same time, it is possible to identify the waters of the Ob and Yenisei Rivers by the estimated values of the total alkalinity and dissolved inorganic carbon obtained during the research expeditions to the Kara sea from 1993 to 2020.</p><p>The calculation of the parts of waters of different origin is done as a result of solving a system of equations. It includes the salinity and alkalinity values of the observed surface waters and those presumably involved in the mixing process. The salinity and alkalinity values of meltwater are taken as 0 and 134 µM respectively.</p><p>The total contribution of the Ob and Yenisei runoff ranges from 20 to 90% as it approaches the estuarine areas. The correlation coefficient between the proportion of river water and the salinity of the surface layer is quite high, it is equal to -0.9. This characterizes the inverse linear relationship. The separate contribution of the waters of the Yenisei differs from the contribution of the waters of the Ob, which is related to the hydrological conditions of the rivers.</p><p>The contribution of meltwater to the formation of the surface layer of the Kara Sea did not exceed 20%, with the exception of the coastal zone of the Novaya Zemlya. In this coastal zone, meltwater provides the greatest contribution compared to the other sources, which is associated with glacial runoff.</p><p>The work is implemented in the framework of the state assignment of the Shirshov Institute of Oceanology RAS (theme No. 0149-2019-0008), with the support of the Russian Scientific Foundation (project № 19-17-00196) and the grant of President of Russian Federation № MK-860.2020.5.</p>


2020 ◽  
Author(s):  
Vladimir Anokhin ◽  
Dina Dudakova ◽  
Mikhael Dudakov

<p>In 2019, the Institute of Limnology of the Russian Academy of Sciences (IL RAS) carried out geological and geomorphological studies of the bottom and shores of Lake Ladoga within the framework of the State project of the IL RAS No. 0154-2018-0003 / 5. The research included the study of the bottom landscapes of Lake Ladoga with help of a series of underwater vehicles Limnoscout, designed and assembled at the IL RAS.</p><p>Underwater photo and video of the bottom in the coastal zone was carried out by the Limnoscout-230 vehicle from a boat. Each video filming polygon  included 2 continuous video profiles of 1-2 km normal to the shore, and 1 connecting profile parallel to the shore of 200-400 m, in the deep part.</p><p>Underwater video filming of the bottom in the open water area of ​​the lake was carried out by the Limnoscout-50 vehicle from the board of the r/v “Poseidon”, by point diving, in which the bottom was shot within a radius of 2-4 m from the dive point.</p><p>Maximal deep of studies was 117 m.</p><p>All underwater surveys were accompanied by echo-sounding surveys and GPS tracking.</p><p>In total, 24 underwater video filming  polygons in the coastal zone and 23 underwater video filming points in the open water area of ​​the northern part of Lake Ladoga were worked out.</p><p>The collected extensive photo and video materials made it possible to make preliminary typology of the bottom landscapes of Lake Ladoga and evaluate their condition.</p><p>Several new important facts of the structure of the bottom of Lake Ladoga and biota distribution were discovered, in particular:</p><p>- For the first time on the bottom of Lake Ladoga, an invasive species of mollusk Dreissena polymorpha was discovered, which in other large lakes has a significant impact on ecosystems.</p><p>- For the first time at the bottom in the northern part of the lake, outlets of presumably Riphean sandstones were discovered, which significantly complements the geological picture of the area.</p><p>- For the first time at the bottom in the northeastern part of the lake an abnormally deep occurrence of coarse deposits was discovered, which is likely to be associated with the intense activity of glaciers.</p><p>The use of underwater photo and video in combination with traditional methods for studying the bottom landscapes of Lake Ladoga has shown the high efficiency of these methods. The studies will be continued.</p>


2021 ◽  
Vol 18 (19) ◽  
pp. 5555-5571
Author(s):  
Kate E. Ashley ◽  
Xavier Crosta ◽  
Johan Etourneau ◽  
Philippine Campagne ◽  
Harry Gilchrist ◽  
...  

Abstract. The Antarctic coastal zone is an area of high primary productivity, particularly within coastal polynyas, where large phytoplankton blooms and drawdown of CO2 occur. Reconstruction of historical primary productivity changes and the associated driving factors could provide baseline insights on the role of these areas as sinks for atmospheric CO2, especially in the context of projected changes in coastal Antarctic sea ice. Here we investigate the potential for using carbon isotopes (δ13C) of fatty acids in marine sediments as a proxy for primary productivity. We use a highly resolved sediment core from off the coast of Adélie Land spanning the last ∼ 400 years and monitor changes in the concentrations and δ13C of fatty acids along with other proxy data from the same core. We discuss the different possible drivers of their variability and argue that C24 fatty acid δ13C predominantly reflects phytoplankton productivity in open-water environments, while C18 fatty acid δ13C reflects productivity in the marginal ice zone. These new proxies have implications for better understanding carbon cycle dynamics in the Antarctica coastal zone in future palaeoclimate studies.


2021 ◽  
Author(s):  
Valentina Sergeeva ◽  
Olga Vorobieva

<p>Pronounced changes in the climate system that lead to a significant reduction in sea ice cover and active glacier melting provoke the great interest in ecosystem studies of archipelago bays in the high Arctic. In addition to increasing the duration of the open water period, the glacier melting increases the fresh water discharge from the archipelagos and thereby affects the coastal ecosystems of the Arctic region. There is practically no information about the ecosystems of the archipelago bays of the seas of the Russian Arctic due to the inaccessibility. Within the framework of the program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, modern comprehensive studies of ecosystems of Novaya Zemlya bays, including phytoplankton (as primary producer of organic matter) were carried out. The most frequent observations were conducted in Blagopoluchiya Bay (North Island of Novaya Zemlya Archipelago), which has several coastal runoffs of glacial origin flow.</p><p>We found that despite the constant enrichment with allochthonous suspended matter and nutrients with runoff from Novaya Zemlya to the Blagopoluchiya Bay there was no increase in phytoplankton production during the summer open water period (Borisenko et al. Thesis EGU21-9528). On the contrary, the quantitative characteristics of phytoplankton in euphotic layer were extremely low: 0.2-0.7 mkgC/l and 0.03 - 0.15 mkgChl/l. Obviously the inclusion of allochthonous nutrients in local production cycles over the sea part of the bay was difficult.</p><p>To clarify the reasons of such low phytoplankton productivity against the background of the enrichment with nutrients of ​​Blagopoluchiya Bay, multifactorial experiments were carried out on the monoculture of the cosmopolitan diatom <em>Thalassiosira nordenskioeldii</em> Cleve, 1873, which is one of the dominant species in the Novaya Zemlya bays. Algae culture was isolated from the phytoplankton community of the Kara Sea and adapted to a salinity of 31 psu, typical for Novaya Zemlya bays. In addition to routine cell counting under microscope we used PAM-fluorometry to control the growth characteristics of algae that makes it possible to observe the photosynthetic activity of algae.</p><p>It was shown that the functioning of algae is greatly influenced by a significant gradients in salinity. When fresh runoff from Novaya Zemlya is mixed with the seawater of the bay, marine planktonic algae experience significant osmostress and immediately settle down and die off. With a slight dilution (up to 29-30 psu) of sea water by freshwater from the archipelago, the algae functioned well and doubled their biomass for 2-3 days. At the same time, we found that the algae were well adapted to a significant range of illumination: 40-200 µE, which apparently allows them to maintain high level of photosynthetic activity under the changing arctic illumination during the Arctic summer at high latitudes.</p><p>This study was performed within the framework of the state assignment of IO RAS, (topic no. 0149-2019-0008) and supported by the Russian Foundation of Basic Research (projects no. 18–05–60069Arctic and 19-04-00322 А).</p>


2021 ◽  
Author(s):  
Karen Filbee-Dexter ◽  
Kathleen A MacGregor ◽  
Camille Lavoie ◽  
Ignacio Garrido ◽  
Jesica Goldsmit ◽  
...  

The coastal zone of the Canadian Arctic represents 10% of the world’s coastline and is one of the most rapidly changing marine regions on the planet. To predict the consequences of these environmental changes, a better understanding of how environmental gradients shape coastal habitat structure in this area is required. We quantified the abundance and diversity of canopy forming seaweeds throughout the nearshore zone (5 - 15 m) of the Eastern Canadian Arctic using diving surveys and benthic collections at 55 sites distributed over 3000 km of coastline. Kelp forests were found throughout, covering on average 40.4 % (± 29.9 SD) of the seafloor across all sites and depths, despite thick sea ice and scarce hard substrata in some areas. Total standing macroalgal biomass ranged from 0 to 32 kg m‑2 WW and averaged 3.7 kg m‑2 (± 3.2 SD) across all sites and depths. Kelps were less abundant at depths of 5 m compared to 10 or 15 m and distinct regional assemblages were related to sea ice cover, substratum type, and nutrient availability. The most common community configuration was a mixed assemblage of four species: Agarum clathratum (14.9% ± 12.0 SD), Saccharina latissima (13% cover ± 14.7 SD), Alaria esculenta (5.4% ± 1.2 SD), and Laminaria solidungula (3.7% ± 4.9 SD). A. clathratum dominated northernmost regions and S. latissima and L. solidungula occurred at high abundance in regions with more open water days. In southeastern areas along the coast of northern Labrador, the coastal zone was mainly sea urchin barrens, with little vegetation. We found positive relationships between open water days (e.g., without sea ice) and kelp biomass and diversity, suggesting kelp forests could increase, and their species composition could shift, as sea ice diminishes in some areas of the Eastern Canadian Arctic. Our findings demonstrate the high potential productivity of this extensive coastal zone and highlight the need to better understand the ecology of these systems and the services they provide.


2020 ◽  
Author(s):  
Kate Ashley ◽  
James Bendle ◽  
Xavier Crosta ◽  
Johan Etourneau ◽  
Philippine Campagne ◽  
...  

Abstract. The Antarctic coastal zone is an area of high primary productivity, particularly within coastal polynyas where large phytoplankton blooms and drawdown of CO2 occur. Reconstruction of historical primary productivity changes, and the associated driving factors, could provide baseline insights on the role of these areas as sinks for atmospheric CO2, especially in the context of projected changes in coastal Antarctic sea ice. Here we investigate the potential for using carbon isotopes (δ13C) of fatty acids in marine sediments as a proxy for primary productivity. We use a highly resolved sediment core from off the coast of Adélie Land spanning the last ~ 400 years and monitor changes in the concentrations and δ13C of fatty acids along with other proxy data from the same core. We discuss the different possible drivers of their variability and argue that C24 fatty acid δ13C predominantly reflects phytoplankton productivity in open water environments, while C18 fatty acid δ13C reflects productivity in the marginal ice zone. These new proxies have implications for better understanding carbon cycle dynamics in the Antarctica coastal zone in future paleoclimate studies.


2021 ◽  
Vol 40 (11) ◽  
pp. 119-128
Author(s):  
Chunming Dong ◽  
Hongtao Nie ◽  
Xiaofan Luo ◽  
Hao Wei ◽  
Wei Zhao
Keyword(s):  

2018 ◽  
Vol 58 (1) ◽  
pp. 65-77 ◽  
Author(s):  
I. D. Streletskaya ◽  
A. A. Vasiliev ◽  
G. E. Oblogov ◽  
P. B. Semenov ◽  
B. G. Vanshtein ◽  
...  
Keyword(s):  
Kara Sea ◽  

Sign in / Sign up

Export Citation Format

Share Document