scholarly journals Design of Painting Art Style Rendering System Based on Convolutional Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xingyu Xie ◽  
Bin Lv

Convolutional Neural Network- (CNN-) based GAN models mainly suffer from problems such as data set limitation and rendering efficiency in the segmentation and rendering of painting art. In order to solve these problems, this paper uses the improved cycle generative adversarial network (CycleGAN) to render the current image style. This method replaces the deep residual network (ResNet) of the original network generator with a dense connected convolutional network (DenseNet) and uses the perceptual loss function for adversarial training. The painting art style rendering system built in this paper is based on perceptual adversarial network (PAN) for the improved CycleGAN that suppresses the limitation of the network model on paired samples. The proposed method also improves the quality of the image generated by the artistic style of painting and further improves the stability and speeds up the network convergence speed. Experiments were conducted on the painting art style rendering system based on the proposed model. Experimental results have shown that the image style rendering method based on the perceptual adversarial error to improve the CycleGAN + PAN model can achieve better results. The PSNR value of the generated image is increased by 6.27% on average, and the SSIM values are all increased by about 10%. Therefore, the improved CycleGAN + PAN image painting art style rendering method produces better painting art style images, which has strong application value.

Neural Networks (ANN) has evolved through many stages in the last three decades with many researchers contributing in this challenging field. With the power of math complex problems can also be solved by ANNs. ANNs like Convolutional Neural Network (CNN), Deep Neural network, Generative Adversarial Network (GAN), Long Short Term Memory (LSTM) network, Recurrent Neural Network (RNN), Ordinary Differential Network etc., are playing promising roles in many MNCs and IT industries for their predictions and accuracy. In this paper, Convolutional Neural Network is used for prediction of Beep sounds in high noise levels. Based on Supervised Learning, the research is developed the best CNN architecture for Beep sound recognition in noisy situations. The proposed method gives better results with an accuracy of 96%. The prototype is tested with few architectures for the training and test data out of which a two layer CNN classifier predictions were the best.


2020 ◽  
Vol 12 (6) ◽  
pp. 1015 ◽  
Author(s):  
Kan Zeng ◽  
Yixiao Wang

Classification algorithms for automatically detecting sea surface oil spills from spaceborne Synthetic Aperture Radars (SARs) can usually be regarded as part of a three-step processing framework, which briefly includes image segmentation, feature extraction, and target classification. A Deep Convolutional Neural Network (DCNN), named the Oil Spill Convolutional Network (OSCNet), is proposed in this paper for SAR oil spill detection, which can do the latter two steps of the three-step processing framework. Based on VGG-16, the OSCNet is obtained by designing the architecture and adjusting hyperparameters with the data set of SAR dark patches. With the help of the big data set containing more than 20,000 SAR dark patches and data augmentation, the OSCNet can have as many as 12 weight layers. It is a relatively deep Deep Learning (DL) network for SAR oil spill detection. It is shown by the experiments based on the same data set that the classification performance of OSCNet has been significantly improved compared to that of traditional machine learning (ML). The accuracy, recall, and precision are improved from 92.50%, 81.40%, and 80.95% to 94.01%, 83.51%, and 85.70%, respectively. An important reason for this improvement is that the distinguishability of the features learned by OSCNet itself from the data set is significantly higher than that of the hand-crafted features needed by traditional ML algorithms. In addition, experiments show that data augmentation plays an important role in avoiding over-fitting and hence improves the classification performance. OSCNet has also been compared with other DL classifiers for SAR oil spill detection. Due to the huge differences in the data sets, only their similarities and differences are discussed at the principle level.


2019 ◽  
Vol 11 (2) ◽  
pp. 135 ◽  
Author(s):  
Xiaoran Shi ◽  
Feng Zhou ◽  
Shuang Yang ◽  
Zijing Zhang ◽  
Tao Su

Aiming at the problem of the difficulty of high-resolution synthetic aperture radar (SAR) image acquisition and poor feature characterization ability of low-resolution SAR image, this paper proposes a method of an automatic target recognition method for SAR images based on a super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN). First, the threshold segmentation is utilized to eliminate the SAR image background clutter and speckle noise and accurately extract target area of interest. Second, the low-resolution SAR image is enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in the SAR image. Third, the automatic classification and recognition for SAR image is realized by using DCNN with good generalization performance. Finally, the open data set, moving and stationary target acquisition and recognition, is utilized and good recognition results are obtained under standard operating condition and extended operating conditions, which verify the effectiveness, robustness, and good generalization performance of the proposed method.


2021 ◽  
Vol 22 (8) ◽  
pp. 4023
Author(s):  
Huimin Shen ◽  
Youzhi Zhang ◽  
Chunhou Zheng ◽  
Bing Wang ◽  
Peng Chen

Accurate prediction of binding affinity between protein and ligand is a very important step in the field of drug discovery. Although there are many methods based on different assumptions and rules do exist, prediction performance of protein–ligand binding affinity is not satisfactory so far. This paper proposes a new cascade graph-based convolutional neural network architecture by dealing with non-Euclidean irregular data. We represent the molecule as a graph, and use a simple linear transformation to deal with the sparsity problem of the one-hot encoding of original data. The first stage adopts ARMA graph convolutional neural network to learn the characteristics of atomic space in the protein–ligand complex. In the second stage, one variant of the MPNN graph convolutional neural network is introduced with chemical bond information and interactive atomic features. Finally, the architecture passes through the global add pool and the fully connected layer, and outputs a constant value as the predicted binding affinity. Experiments on the PDBbind v2016 data set showed that our method is better than most of the current methods. Our method is also comparable to the state-of-the-art method on the data set, and is more intuitive and simple.


2020 ◽  
Vol 222 (1) ◽  
pp. 247-259 ◽  
Author(s):  
Davood Moghadas

SUMMARY Conventional geophysical inversion techniques suffer from several limitations including computational cost, nonlinearity, non-uniqueness and dimensionality of the inverse problem. Successful inversion of geophysical data has been a major challenge for decades. Here, a novel approach based on deep learning (DL) inversion via convolutional neural network (CNN) is proposed to instantaneously estimate subsurface electrical conductivity (σ) layering from electromagnetic induction (EMI) data. In this respect, a fully convolutional network was trained on a large synthetic data set generated based on 1-D EMI forward model. The accuracy of the proposed approach was examined using several synthetic scenarios. Moreover, the trained network was used to find subsurface electromagnetic conductivity images (EMCIs) from EMI data measured along two transects from Chicken Creek catchment (Brandenburg, Germany). Dipole–dipole electrical resistivity tomography data were measured as well to obtain reference subsurface σ distributions down to a 6 m depth. The inversely estimated models were juxtaposed and compared with their counterparts obtained from a spatially constrained deterministic algorithm as a standard code. Theoretical simulations demonstrated a well performance of the algorithm even in the presence of noise in data. Moreover, application of the DL inversion for subsurface imaging from Chicken Creek catchment manifested the accuracy and robustness of the proposed approach for EMI inversion. This approach returns subsurface σ distribution directly from EMI data in a single step without any iterations. The proposed strategy simplifies considerably EMI inversion and allows for rapid and accurate estimation of subsurface EMCI from multiconfiguration EMI data.


Sign in / Sign up

Export Citation Format

Share Document