A highly chlorophyll-sensitive and LAI-insensitive index based on the red-edge band: CSI

Author(s):  
Hu Zhang ◽  
Jing Li ◽  
Qinhuo Liu ◽  
Jing Zhao ◽  
Yadong Dong
Keyword(s):  
Red Edge ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 826-840 ◽  
Author(s):  
Yuanheng Sun ◽  
Qiming Qin ◽  
Huazhong Ren ◽  
Tianyuan Zhang ◽  
Shanshan Chen

2019 ◽  
Vol 11 (23) ◽  
pp. 2807 ◽  
Author(s):  
Arthur Bayle ◽  
Bradley Carlson ◽  
Vincent Thierion ◽  
Marc Isenmann ◽  
Philippe Choler

Shrub encroachment into grassland and rocky habitats is a noticeable land cover change currently underway in temperate mountains and is a matter of concern for the sustainable management of mountain biodiversity. Current land cover products tend to underestimate the extent of mountain shrublands dominated by Ericaceae (Vaccinium spp. (species) and Rhododendron ferrugineum). In addition, mountain shrubs are often confounded with grasslands. Here, we examined the potential of anthocyanin-responsive vegetation indices to provide more accurate maps of mountain shrublands in a mountain range located in the French Alps. We relied on the multi-spectral instrument onboard the Sentinel-2A and 2B satellites and the availability of red-edge bands to calculate a Normalized Anthocyanin Reflectance Index (NARI). We used this index to quantify the autumn accumulation of anthocyanin in canopies dominated by Vaccinium spp. and Rhododendron ferrugineum and compared the effectiveness of NARI to Normalized Difference Vegetation Index (NDVI) as a basis for shrubland mapping. Photointerpretation of high-resolution aerial imagery, intensive field campaigns, and floristic surveys provided complementary data to calibrate and evaluate model performance. The proposed NARI-based model performed better than the NDVI-based model with an area under the curve (AUC) of 0.92 against 0.58. Validation of shrub cover maps based on NARI resulted in a Kappa coefficient of 0.67, which outperformed existing land cover products and resulted in a ten-fold increase in estimated area occupied by Ericaceae-dominated shrublands. We conclude that the Sentinel-2 red-edge band provides novel opportunities to detect seasonal anthocyanin accumulation in plant canopies and discuss the potential of our method to quantify long-term dynamics of shrublands in alpine and arctic contexts.


2020 ◽  
Vol 12 (6) ◽  
pp. 938 ◽  
Author(s):  
Huichun Ye ◽  
Wenjiang Huang ◽  
Shanyu Huang ◽  
Bei Cui ◽  
Yingying Dong ◽  
...  

Fusarium wilt (Panama disease) of banana currently threatens banana production areas worldwide. Timely monitoring of Fusarium wilt disease is important for the disease treatment and adjustment of banana planting methods. The objective of this study was to establish a method for identifying the banana regions infested or not infested with Fusarium wilt disease using unmanned aerial vehicle (UAV)-based multispectral imagery. Two experiments were conducted in this study. In experiment 1, 120 sample plots were surveyed, of which 75% were used as modeling dataset for model fitting and the remaining were used as validation dataset 1 (VD1) for validation. In experiment 2, 35 sample plots were surveyed, which were used as validation dataset 2 (VD2) for model validation. An UAV equipped with a five band multispectral camera was used to capture the multispectral imagery. Eight vegetation indices (VIs) related to pigment absorption and plant growth changes were chosen for determining the biophysical and biochemical characteristics of the plants. The binary logistic regression (BLR) method was used to assess the spatial relationships between the VIs and the plants infested or not infested with Fusarium wilt. The results showed that the banana Fusarium wilt disease can be easily identified using the VIs including the green chlorophyll index (CIgreen), red-edge chlorophyll index (CIRE), normalized difference vegetation index (NDVI), and normalized difference red-edge index (NDRE). The fitting overall accuracies of the models were greater than 80%. Among the investigated VIs, the CIRE exhibited the best performance both for the VD1 (OA = 91.7%, Kappa = 0.83) and VD2 (OA = 80.0%, Kappa = 0.59). For the same type of VI, the VIs including a red-edge band obtained a better performance than that excluding a red-edge band. A simulation of imagery with different spatial resolutions (i.e., 0.5-m, 1-m, 2-m, 5-m, and 10-m resolutions) showed that good identification accuracy of Fusarium wilt was obtained when the resolution was higher than 2 m. As the resolution decreased, the identification accuracy of Fusarium wilt showed a decreasing trend. The findings indicate that UAV-based remote sensing with a red-edge band is suitable for identifying banana Fusarium wilt disease. The results of this study provide guidance for detecting the disease and crop planting adjustment.


Author(s):  
R. Sanjeeva Reddy

With the recent free availability of moderate to high spatial resolution data (10m-30m), land use analysis became more robust. The launch of Sentinel-2a by the European Space Agency, coupled with the availability of free Landsat data, availed more analysis capabilities for the science community with a wide variety of temporal, spatial, and spectral capabilities. This study compares the synergetic use of Landsat and Sentinel-2 in mapping Land Use Land cover themes in Gudur, explicitly utilizing the red edge band of Sentinel-2. A combination of both sentinel and Landsat data results in higher spatial resolution. Classification of the red edge band produces better resolution than the classification of Landsat Imagery.


Author(s):  
A. Ramoelo ◽  
A.K. Skidmore ◽  
M.A. Cho ◽  
M. Schlerf ◽  
R. Mathieu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document