Quantum Imaging for Remote Sensing and Earth Observation

Author(s):  
Francesco V. Pepe ◽  
Cristofaro Abbatista ◽  
Leonardo Amoruso ◽  
Milena Dangelo
2020 ◽  
Vol 12 (21) ◽  
pp. 3535 ◽  
Author(s):  
Phillip B. McKenna ◽  
Alex M. Lechner ◽  
Stuart Phinn ◽  
Peter D. Erskine

The mining industry has been operating across the globe for millennia, but it is only in the last 50 years that remote sensing technology has enabled the visualization, mapping and assessment of mining impacts and landscape recovery. Our review of published literature (1970–2019) found that the number of ecologically focused remote sensing studies conducted on mine site rehabilitation increased gradually, with the greatest proportion of studies published in the 2010–2019 period. Early studies were driven exclusively by Landsat sensors at the regional and landscape scales while in the last decade, multiple earth observation and drone-based sensors across a diverse range of study locations contributed to our increased understanding of vegetation development post-mining. The Normalized Differenced Vegetation Index (NDVI) was the most common index, and was used in 45% of papers; while research that employed image classification techniques typically used supervised (48%) and manual interpretation methods (37%). Of the 37 publications that conducted error assessments, the average overall mapping accuracy was 84%. In the last decade, new classification methods such as Geographic Object-Based Image Analysis (GEOBIA) have emerged (10% of studies within the last ten years), along with new platforms and sensors such as drones (15% of studies within the last ten years) and high spatial and/or temporal resolution earth observation satellites. We used the monitoring standards recommended by the International Society for Ecological Restoration (SER) to determine the ecological attributes measured by each study. Most studies (63%) focused on land cover mapping (spatial mosaic); while comparatively fewer studies addressed complex topics such as ecosystem function and resilience, species composition, and absence of threats, which are commonly the focus of field-based rehabilitation monitoring. We propose a new research agenda based on identified knowledge gaps and the ecological monitoring tool recommended by SER, to ensure that future remote sensing approaches are conducted with a greater focus on ecological perspectives, i.e., in terms of final targets and end land-use goals. In particular, given the key rehabilitation requirement of self-sustainability, the demonstration of ecosystem resilience to disturbance and climate change should be a key area for future research.


Most systems reliant on advanced technology present a familiar dilemma: the system designer does not know what the customer wants, while the customer does not understand the technology well enough to know what is possible. Although Earth observation satellite systems ought ideally to be designed for all customer needs, this is impossible for several reasons. Not least of these is the difficulty of identifying at the outset all, or even most, of the possible customers. This circumstance makes the creation of Earth observation systems somewhat speculative and imposes particular constraints on the subsystems for processing and use of the data. This paper discusses the technical and institutional aspects of processing and dissemination of data from remote-sensing satellites for the benefit of the user.


2020 ◽  
Author(s):  
Verhegghen Astrid ◽  
d'Andrimont Raphaël ◽  
Lemoine Guido ◽  
Strobl Peter ◽  
van der Velde Marijn

<p>Efficient near-real time and wall-to-wall land monitoring is now possible with unprecedented detail because of the fleet of Copernicus Sentinel satellites. This remote sensing paradigm is the consequence of the freely accessible, global, Copernicus data, combined with affordable cloud computing. However, to translate this capacity in accurate products, and to truly benefit from the high spatial detail (~10m) and temporal resolution (~5 days in constellation) of the Sentinels 1 and 2, high quality and timely in-situ data remains crucial. Robust operational monitoring systems are in need of both training and validation data. </p><p>Here, we demonstrate the potential of Sentinel 1 observations and complementary high-quality in-situ data to generate a crop type map at continental scale. In 2018, the Land Cover and Land Use Area frame Survey (LUCAS) carried out in the European Union contained a specific Copernicus module corresponding to 93.091 polygons surveyed in-situ. In contrast to the usual LUCAS point observation, the Copernicus protocol provides data on the extent of homogeneous land cover for a maximum size of 100 x 100 m, making it meaningful for remote sensing applications. After filtering the polygons to retrieve only high quality sample, a sample was selected to explore the accuracy of crop type maps at different moments of the 2018 growing season over Europe. The time series of 10 days VV and VH were classified using Random Forest models. The crops that were mapped correspond to the 13 major crops in Europe and are those that are monitored and forecast by the JRC MARS activities (soft wheat, maize, rapeseed, barley, potatoes, ...). Overall, reasonable accuracies were obtained (~80%). Although no a priori parcel delineation was used, it was encouraging to observe the relative homogeneity of pixel classification results within the same parcel. In the context of forecasting, we specifically assessed at what time in the growing season accuracies moved beyond a set threshold for the different crops. This ranged from May for winter crops such as soft wheat, and September for summer crops such as maize. </p><p>Our results contribute to the discussion regarding the usefulness, benefits, as well as weaknesses, of the newly acquired LUCAS Copernicus data. Doing so, this study demonstrates the potential of in-situ surveys such as LUCAS Copernicus module  specifically targeted for Earth Observation applications. Future improvements to the LUCAS Copernicus survey methodology are suggested. Importantly, now that LUCAS has been postponed to 2022, and aligned with the Copernicus space program, we advocate for a European Union wide systematic and representative in-situ sample campaign relevant for Earth Observation applications, beyond the traditional LUCAS survey. </p>


2020 ◽  
Author(s):  
Clemens Kramm ◽  
Henryk Hodam ◽  
Carsten Jürgens ◽  
Claudia Lindner ◽  
Annette Ortwein ◽  
...  

<p>„I want to remind the students that asked me the questions, that you are the future of science, technology and exploration. You have that flame. You teachers are fanning the flame, so it becomes a fire of curiosity and future exploration. We trust your generation to come up with the questions and the answers that we need to be better humans in the future.” – Luca Parmitano, Commander of the International Space Station (ISS)</p><p>Remote sensing and space travels have become a major tool for research and development in terms of scientific problems since the 1970’s. You don’t have to be an astronaut or pilot to get in touch with the many achievements, applications and scientific findings. Everyone and especially pupils are using them on a daily basis. Therefore, to deliberate the use of these technologies in school is crucial. The topic of remote sensing and space travels is quite complex and diverse, so many teachers are struggling to integrate them into their lessons. The main goal should be to support teachers by providing useful remote sensing school material and to encourage them to use these in their lessons. However teachers need the right science-based tools to fan “the flame, so it becomes a fire of curiosity”. To assist them in an effective manner it is necessary to adapt to their standard procedure of preparing a lesson: a fully developed teaching concept which includes not only the analysis of the topic itself but also the current curricula, the class, the didactics, the method and the material. Thereby it is possible to demonstrate how beneficial and well-grounded such a lesson can be.</p><p>The presentation addresses the question of how synergies of human space travels can be used to educate pupils and enhance the fascination of earth observation imagery in the light of problem-based learning in everyday school lessons. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular curricula and how teachers can appropriately justify the appliance in their lessons. A comprehensive teaching concept example will be discussed, which matches german teaching standards and uses NASA’s High Definition Earth Viewing (HDEV) videos from the International Space Station (ISS) to enrich a secondary school geography lesson about the different geographic zones on earth.</p>


Sign in / Sign up

Export Citation Format

Share Document