A Sentinel-1 based European crop parcel map using 2018 in-situ LUCAS Copernicus observations

Author(s):  
Verhegghen Astrid ◽  
d'Andrimont Raphaël ◽  
Lemoine Guido ◽  
Strobl Peter ◽  
van der Velde Marijn

<p>Efficient near-real time and wall-to-wall land monitoring is now possible with unprecedented detail because of the fleet of Copernicus Sentinel satellites. This remote sensing paradigm is the consequence of the freely accessible, global, Copernicus data, combined with affordable cloud computing. However, to translate this capacity in accurate products, and to truly benefit from the high spatial detail (~10m) and temporal resolution (~5 days in constellation) of the Sentinels 1 and 2, high quality and timely in-situ data remains crucial. Robust operational monitoring systems are in need of both training and validation data. </p><p>Here, we demonstrate the potential of Sentinel 1 observations and complementary high-quality in-situ data to generate a crop type map at continental scale. In 2018, the Land Cover and Land Use Area frame Survey (LUCAS) carried out in the European Union contained a specific Copernicus module corresponding to 93.091 polygons surveyed in-situ. In contrast to the usual LUCAS point observation, the Copernicus protocol provides data on the extent of homogeneous land cover for a maximum size of 100 x 100 m, making it meaningful for remote sensing applications. After filtering the polygons to retrieve only high quality sample, a sample was selected to explore the accuracy of crop type maps at different moments of the 2018 growing season over Europe. The time series of 10 days VV and VH were classified using Random Forest models. The crops that were mapped correspond to the 13 major crops in Europe and are those that are monitored and forecast by the JRC MARS activities (soft wheat, maize, rapeseed, barley, potatoes, ...). Overall, reasonable accuracies were obtained (~80%). Although no a priori parcel delineation was used, it was encouraging to observe the relative homogeneity of pixel classification results within the same parcel. In the context of forecasting, we specifically assessed at what time in the growing season accuracies moved beyond a set threshold for the different crops. This ranged from May for winter crops such as soft wheat, and September for summer crops such as maize. </p><p>Our results contribute to the discussion regarding the usefulness, benefits, as well as weaknesses, of the newly acquired LUCAS Copernicus data. Doing so, this study demonstrates the potential of in-situ surveys such as LUCAS Copernicus module  specifically targeted for Earth Observation applications. Future improvements to the LUCAS Copernicus survey methodology are suggested. Importantly, now that LUCAS has been postponed to 2022, and aligned with the Copernicus space program, we advocate for a European Union wide systematic and representative in-situ sample campaign relevant for Earth Observation applications, beyond the traditional LUCAS survey. </p>

2021 ◽  
Vol 13 (3) ◽  
pp. 1119-1133
Author(s):  
Raphaël d'Andrimont ◽  
Astrid Verhegghen ◽  
Michele Meroni ◽  
Guido Lemoine ◽  
Peter Strobl ◽  
...  

Abstract. The Land Use/Cover Area frame Survey (LUCAS) is an evenly spaced in situ land cover and land use ground survey exercise that extends over the whole of the European Union. LUCAS was carried out in 2006, 2009, 2012, 2015, and 2018. A new LUCAS module specifically tailored to Earth observation (EO) was introduced in 2018: the LUCAS Copernicus module. The module surveys the land cover extent up to 51 m in four cardinal directions around a point of observation, offering in situ data compatible with the spatial resolution of high-resolution sensors. However, the use of the Copernicus module being marginal, the goal of the paper is to facilitate its uptake by the EO community. First, the paper summarizes the LUCAS Copernicus protocol to collect homogeneous land cover on a surface area of up to 0.52 ha. Secondly, it proposes a methodology to create a ready-to-use dataset for Earth observation land cover and land use applications with high-resolution satellite imagery. As a result, a total of 63 364 LUCAS points distributed over 26 level-2 land cover classes were surveyed on the ground. Using homogeneous extent information in the four cardinal directions, a polygon was delineated for each of these points. Through geospatial analysis and by semantically linking the LUCAS core and Copernicus module land cover observations, 58 426 polygons are provided with level-3 land cover (66 specific classes including crop type) and land use (38 classes) information as inherited from the LUCAS core observation. The open-access dataset supplied with this paper (https://doi.org/10.6084/m9.figshare.12382667.v4 d'Andrimont, 2020) provides a unique opportunity to train and validate decametric sensor-based products such as those obtained from the Copernicus Sentinel-1 and Sentinel-2 satellites. A follow-up of the LUCAS Copernicus module is already planned for 2022. In 2022, a simplified version of the LUCAS Copernicus module will be carried out on 150 000 LUCAS points for which in situ surveying is planned. This guarantees a continuity in the effort to find synergies between statistical in situ surveying and the need to collect in situ data relevant for Earth observation in the European Union.


2020 ◽  
Author(s):  
Raphaël d'Andrimont ◽  
Astrid Verhegghen ◽  
Michele Meroni ◽  
Guido Lemoine ◽  
Peter Strobl ◽  
...  

Abstract. The Land Use/Cover Area frame Survey (LUCAS) is a regular in-situ land cover and land use ground survey exercise that extends over the whole of the European Union. LUCAS was carried out in 2006, 2009, 2012, 2015, and 2018. A new LUCAS module specifically tailored to Earth Observation was introduced in 2018: the LUCAS Copernicus module, aiming at surveying land cover extent up to 51 meters in four cardinal directions around a point of observation. This paper first summarizes the LUCAS Copernicus protocol to collect homogeneous land cover on a surface area of up to a 0.52 ha. Secondly, it proposes a methodology to create a ready-to-use dataset for Earth Observation land cover and land use applications with high resolution satellite imagery. As a result, a total of 63,364 LUCAS points distributed over 26 level-2 land cover classes were surveyed on the ground. Using homogeneous extent information in the four cardinal direction, a polygon was delineated for each of such point. Through geo-spatial analysis and by semantically linking the LUCAS core and Copernicus land cover observations, 58,428 polygons are provided with a level-3 land cover (66 specific classes including crop type) and land use (38 classes) information as inherited from the LUCAS core observation. The open-access dataset supplied with this manuscript (https://doi.org/10.6084/m9.figshare.12382667.v3) provides a unique opportunity to train and validate decametric sensor-based products such as those obtained from the Copernicus Sentinel-1 and -2 satellites. A follow-up of the LUCAS Copernicus module is already planned for 2022. In 2022, a simplified version of the LUCAS Copernicus module will be carried out on 150,000 LUCAS points for which in-situ surveying is planned. This guarantees a continuity in the effort to find synergies between statistical in-situ surveying and the need to collect in-situ data relevant for Earth Observation in the European Union.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 446
Author(s):  
Juan Carlos Laso Bayas ◽  
Linda See ◽  
Hedwig Bartl ◽  
Tobias Sturn ◽  
Mathias Karner ◽  
...  

There are many new land use and land cover (LULC) products emerging yet there is still a lack of in situ data for training, validation, and change detection purposes. The LUCAS (Land Use Cover Area frame Sample) survey is one of the few authoritative in situ field campaigns, which takes place every three years in European Union member countries. More recently, a study has considered whether citizen science and crowdsourcing could complement LUCAS survey data, e.g., through the FotoQuest Austria mobile app and crowdsourcing campaign. Although the data obtained from the campaign were promising when compared with authoritative LUCAS survey data, there were classes that were not well classified by the citizens. Moreover, the photographs submitted through the app were not always of sufficient quality. For these reasons, in the latest FotoQuest Go Europe 2018 campaign, several improvements were made to the app to facilitate interaction with the citizens contributing and to improve their accuracy in LULC identification. In addition to extending the locations from Austria to Europe, a change detection component (comparing land cover in 2018 to the 2015 LUCAS photographs) was added, as well as an improved LC decision tree. Furthermore, a near real-time quality assurance system was implemented to provide feedback on the distance to the target location, the LULC classes chosen and the quality of the photographs. Another modification was a monetary incentive scheme in which users received between 1 to 3 Euros for each successfully completed quest of sufficient quality. The purpose of this paper is to determine whether citizens can provide high quality in situ data on LULC through crowdsourcing that can complement LUCAS. We compared the results between the FotoQuest campaigns in 2015 and 2018 and found a significant improvement in 2018, i.e., a much higher match of LC between FotoQuest Go Europe and LUCAS. As shown by the cost comparisons with LUCAS, FotoQuest can complement LUCAS surveys by enabling continuous collection of large amounts of high quality, spatially explicit field data at a low cost.


2021 ◽  
Author(s):  
Jennifer Sobiech-Wolf ◽  
Tobias Ullmann ◽  
Wolfgang Dierking

<p>Satellite remote sensing as well as in-situ measurements are common tools to monitor the state of Arctic environments. However, remote sensing products often lack sufficient temporal and/or spatial resolution, and in-situ measurements can only describe the environmental conditions on a very limited spatial scale. Therefore, we conducted an air-borne campaign to connect the detailed in-situ data with poor spatial coverage to coarse satellite images. The SMART campaign is part of the ongoing project „Characterization of Polar Permafrost Landscapes by Means of Multi-Temporal and Multi-Scale Remote Sensing, and In-Situ Measurements“, funded by the German Research Foundation (DFG).  The focus of the project is to close the gap between in-situ measurements and space-borne images in polar permafrost landscapes. The airborne campaign SMART was conducted in late summer 2018 in north-west Canada, focussing on the Mackenzie-Delta region, which is underlain by permafrost and rarely inhabited. The land cover is either dominated by open Tundra landscapes or by boreal forests. The Polar-5 research-aircraft from the Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Germany, was equipped with a ground penetrating radar, a hyperspectral camara, a laserscanner, and an infrared temperature sensor amongst others. In parallel to the airborne acquisition, a team collected in-situ data on ground, including manual active layer depth measurements, geophysical surveying using 2D Electric Resistivity Tomography (ERT), GPR, and mapping of additional land cover properties. The database was completed by a variety of satellite data from different platforms, e.g. MODIS, Landsat, TerraSAR-X and Sentinel-1.  As part of the project, we analysed the performance of MODIS Land surfaces temperature products compared to our air-borne infrared measurements and evaluated, how long the land surface temperatures of this Arctic environment can be considered as stable. It turned out that the MODIS data differ up to 2°C from the air-borne measurements. If this is due to the spatial difference of the measurements or a result of data processing of the MODIS LST products is part of ongoing analysis.</p>


2018 ◽  
Vol 10 (1) ◽  
pp. 525-548 ◽  
Author(s):  
Sina C. Truckenbrodt ◽  
Christiane C. Schmullius

Abstract. Ground reference data are a prerequisite for the calibration, update, and validation of retrieval models facilitating the monitoring of land parameters based on Earth Observation data. Here, we describe the acquisition of a comprehensive ground reference database which was created to test and validate the recently developed Earth Observation Land Data Assimilation System (EO-LDAS) and products derived from remote sensing observations in the visible and infrared range. In situ data were collected for seven crop types (winter barley, winter wheat, spring wheat, durum, winter rape, potato, and sugar beet) cultivated on the agricultural Gebesee test site, central Germany, in 2013 and 2014. The database contains information on hyperspectral surface reflectance factors, the evolution of biophysical and biochemical plant parameters, phenology, surface conditions, atmospheric states, and a set of ground control points. Ground reference data were gathered at an approximately weekly resolution and on different spatial scales to investigate variations within and between acreages. In situ data collected less than 1 day apart from satellite acquisitions (RapidEye, SPOT 5, Landsat-7 and -8) with a cloud coverage  ≤  25 % are available for 10 and 15 days in 2013 and 2014, respectively. The measurements show that the investigated growing seasons were characterized by distinct meteorological conditions causing interannual variations in the parameter evolution. Here, the experimental design of the field campaigns, and methods employed in the determination of all parameters, are described in detail. Insights into the database are provided and potential fields of application are discussed. The data will contribute to a further development of crop monitoring methods based on remote sensing techniques. The database is freely available at PANGAEA (https://doi.org/10.1594/PANGAEA.874251).


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 127 ◽  
Author(s):  
Raphaël d'Andrimont ◽  
Momchil Yordanov ◽  
Guido Lemoine ◽  
Janine Yoong ◽  
Kamil Nikel ◽  
...  

New approaches to collect in-situ data are needed to complement the high spatial (10 m) and temporal (5 d) resolution of Copernicus Sentinel satellite observations. Making sense of Sentinel observations requires high quality and timely in-situ data for training and validation. Classical ground truth collection is expensive, lacks scale, fails to exploit opportunities for automation, and is prone to sampling error. Here we evaluate the potential contribution of opportunistically exploiting crowdsourced street-level imagery to collect massive high-quality in-situ data in the context of crop monitoring. This study assesses this potential by answering two questions: (1) what is the spatial availability of these images across the European Union (EU), and (2) can these images be transformed to useful data? To answer the first question, we evaluated the EU availability of street-level images on Mapillary—the largest open-access platform for such images—against the Land Use and land Cover Area frame Survey (LUCAS) 2018, a systematic surveyed sampling of 337,031 points. For 37.78% of the LUCAS points a crowdsourced image is available within a 2 km buffer, with a mean distance of 816.11 m. We estimate that 9.44% of the EU territory has a crowdsourced image within 300 m from a LUCAS point, illustrating the huge potential of crowdsourcing as a complementary sampling tool. After artificial and built up (63.14%), and inland water (43.67%) land cover classes, arable land has the highest availability at 40.78%. To answer the second question, we focus on identifying crops at parcel level using all 13.6 million Mapillary images collected in the Netherlands. Only 1.9% of the contributors generated 75.15% of the images. A procedure was developed to select and harvest the pictures potentially best suited to identify crops using the geometries of 785,710 Dutch parcels and the pictures’ meta-data such as camera orientation and focal length. Availability of crowdsourced imagery looking at parcels was assessed for eight different crop groups with the 2017 parcel level declarations. Parcel revisits during the growing season allowed to track crop growth. Examples illustrate the capacity to recognize crops and their phenological development on crowdsourced street-level imagery. Consecutive images taken during the same capture track allow selecting the image with the best unobstructed view. In the future, dedicated crop capture tasks can improve image quality and expand coverage in rural areas.


Author(s):  
Raphaël d'Andrimont ◽  
Momchil Iordanov ◽  
Guido Lemoine ◽  
Janine Yoong ◽  
Kamil Nikel ◽  
...  

New approaches to collect in-situ data are needed to complement the high spatial (10~m) and temporal (5-day) resolution of Copernicus Sentinel satellite observations. Making sense of Sentinel observations requires high quality and timely in-situ data for training and validation. Classical ground truth collection is expensive, lacks scale, fails to exploit opportunities for automation, and is prone to sampling error. Here we evaluate the potential contribution of opportunistically exploiting crowd-sourced street-level imagery to collect massive high-quality in-situ data in the context of crop monitoring. This study assesses this potential by answering two questions: 1) what is the spatial availability of these images across the European Union (EU)? and 2) can these images be transformed to useful data? To answer the first question, we evaluated the EU availability of street-level images on Mapillary - the largest open-access platform for such images - against the Land Use and land Cover Area frame Survey (LUCAS) 2018, a systematic surveyed sampling of 337031 points. For 37.78% of the LUCAS points a crowd-sourced image is available within a 2-km buffer, with a mean distance of 816.11 m. We estimate that 9.44% of the EU territory has a crowd-sourced image within 300-m from a LUCAS point, illustrating the huge potential of crowd-sourcing as a complementary sampling tool. After artificial and built up (63.14%), and inland water (43.67%) land cover classes, arable land has the highest availability at 40.78%. To answer the second question, we focus on identifying crops at parcel level using all 13.6 million Mapillary images collected in the Netherlands. Only 1.9% of the contributors generated 75.15% of the images. A procedure was developed to select and harvest the pictures potentially best suited to identify crops using the geometries of 785710 Dutch parcels and the pictures' meta-data such as camera orientation and focal length. Availability of crowd-sourced imagery looking at parcels was assessed for 8 different crop groups with the 2017 parcel level declarations. Parcel revisits during the growing season allowed to track crop growth. Examples illustrate the capacity to recognize crops and their phenological development on crowd-sourced street-level imagery. Consecutive images taken during the same capture track allow selecting the image with the best unobstructed view. In the future, dedicated crop capture tasks can improve image quality and expand coverage in rural areas.


Author(s):  
Juan Carlos Laso Bayas ◽  
Linda See ◽  
Hedwig Bartl ◽  
Tobias Sturn ◽  
Mathias Karner ◽  
...  

There are many new land use and land cover (LULC) products emerging yet there is still a lack of in-situ data for training, validation, and change detection purposes. The LUCAS (Land Use Cover Area frame Sample) survey is one of the few authoritative in-situ field campaigns, which takes place every three years in European Union member countries. More recently, a study has considered whether citizen science and crowdsourcing could complement LUCAS survey data, e.g., through the FotoQuest Austria mobile app and crowdsourcing campaign. Although the data obtained from the campaign were promising when compared with authoritative LUCAS survey data, there were classes that were not well classified by the citizens, and the photographs submitted through the app were not always of sufficient quality. For this reason, in the latest FotoQuest Go Europe 2018 campaign, several improvements were made to the app to facilitate interaction with the citizens contributing and to improve their accuracy in LULC identification. In addition to extending the locations from Austria to Europe, a change detection component (comparing land cover in 2018 to the 2015 LUCAS photographs) was added, as well as an improved LC decision tree and a near real-time quality assurance system to provide feedback on the distance to the target location, the LULC classes chosen and the quality of the photographs. Another modification was the implementation of a monetary incentive scheme in which users received between 1 to 3 Euros for each successfully completed quest of sufficient quality. The purpose of this paper is to present these new features and to compare the results obtained by the citizens with authoritative LUCAS data from 2018 in terms of LULC and change in LC. We also compared the results between the FotoQuest campaigns in 2015 and 2018 and found a significant improvement in 2018, i.e., a much higher match of LC between FotoQuest Go Europe and LUCAS. Finally, we present the results from a user survey to discuss challenges encountered during the campaign and what further improvements could be made in the future, including better in-app navigation and offline maps, making FotoQuest a model for enabling the collection of large amounts of land cover data at a low cost.


Irriga ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 585-598
Author(s):  
Pedro Henrique Jandreice Magnoni ◽  
Cesar De Oliveira Ferreira Silva ◽  
Rodrigo Lilla Manzione

SENSORIAMENTO REMOTO APLICADO AO MANEJO DA IRRIGAÇÃO EM ÁREAS COM ESCASSEZ DE DADOS: ESTUDO DE CASO EM PIVÔ CENTRAL EM ITATINGA-SP*     PEDRO HENRIQUE JANDREICE MAGNONI1; CÉSAR DE OLIVEIRA FERREIRA SILVA1 E RODRIGO LILLA MANZIONE2   1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista", Avenida Universitária, n° 3780, Altos do Paraíso, 18610-034, Botucatu, São Paulo, Brasil,  [email protected]; [email protected]. 2 Departamento de Engenharia de Biossistemas, Faculdade de Ciências e Engenharia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Domingos da Costa Lopes, 780, CEP 17602496, Tupã – SP, Brasil. E-mail: [email protected]. *Este artigo é proveniente das dissertações de mestrado dos dois primeiros autores.     1 RESUMO   Ferramentas baseadas em sensoriamento remoto possibilitam o monitoramento do balanço hídrico da água em diferentes resoluções espaciais e temporais. Ainda assim, modelos que exigem dados in-situ impossibilitam sua aplicação em áreas com escassez de dados. No sentido de lidar com esse desafio, o presente trabalho apresenta uma abordagem de escolha do momento de irrigar, pelo balanço hídrico da água no solo, baseada em estimativa da evapotranspiração real (ETA) obtida com o uso conjunto de imagens multiespectrais do sensor MSI/SENTINEL-2 e dados de uma estação meteorológica pública. A área de estudo foi um pivô central localizado no munícipio de Itatinga-SP. Para a tomada de decisão do momento de irrigar, com base em um manejo por lâmina de irrigação fixa, foi feita a interpolação da fração evapotranspirativa entre os dias com imagens disponíveis para obter a ETA nos dias sem imagens por meio do seu produto com a evapotranspiração de referência. Essa abordagem captou variações climáticas essenciais para a estimativa do balanço hídrico em dias sem imagem. Destaca-se nessa aplicação conjunta sua capacidade de ser realizada sem necessitar de parâmetros específicos da cultura, do microclima ou do relevo, tornando-se interessante para regiões com escassez de dados.   Palavras-chave:  evapotranspiração, momento de irrigar, agriwater.     MAGNONI, P. H. J.; SILVA, C. O. F.; MANZIONE, R. L. REMOTE SENSING APPLIED TO IRRIGATION MANAGEMENT IN AREAS WITH LACK OF DATA: A CASE STUDY IN A CENTRAL PIVOT IN ITATINGA-SP     2 ABSTRACT   Remote sensing-based tools allow the monitoring of water budgets over different spatial and temporal resolutions. Nevertheless, some models require in situ data, preventing their application in areas with a lack of data. To address this challenge, this work presents an approach for irrigation scheduling, based on soil water budget estimation using actual evapotranspiration (ETA) obtained using MSI/SENTINEL-2 multispectral images and data from a public meteorological station. The study area consisted of a central pivot located in the municipality of Itatinga-SP, Brazil. For decision-making of irrigation scheduling, considering a fixed irrigation rate, the evapotranspiration fraction was interpolated between the days with available images to obtain the ETA on the days without images using its product with the reference evapotranspiration. This approach captured essential climate variations for estimating the water budget on non-image days. Noteworthy in this joint application is its suitability to be performed not requiring crop-, microclimate- or relief-specific parameters, making it useful for regions with a lack of data.   Keywords: evapotranspiration, irrigation scheduling, agriwater.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3609 ◽  
Author(s):  
Kyryliuk ◽  
Kratzer

In this study, the Level-2 products of the Ocean and Land Colour Instrument (OLCI) data on Sentinel-3A are derived using the Case-2 Regional CoastColour (C2RCC) processor for the SentiNel Application Platform (SNAP) whilst adjusting the specific scatter of Total Suspended Matter (TSM) for the Baltic Sea in order to improve TSM retrieval. The remote sensing product “kd_z90max” (i.e., the depth of the water column from which 90% of the water-leaving irradiance are derived) from C2RCC-SNAP showed a good correlation with in situ Secchi depth (SD). Additionally, a regional in-water algorithm was applied to derive SD from the attenuation coefficient Kd(489) using a local algorithm. Furthermore, a regional in-water relationship between particle scatter and bench turbidity was applied to generate turbidity from the remote sensing product “iop_bpart” (i.e., the scattering coefficient of marine particles at 443 nm). The spectral shape of the remote sensing reflectance (Rrs) data extracted from match-up stations was evaluated against reflectance data measured in situ by a tethered Attenuation Coefficient Sensor (TACCS) radiometer. The L2 products were evaluated against in situ data from several dedicated validation campaigns (2016–2018) in the NW Baltic proper. All derived L2 in-water products were statistically compared to in situ data and the results were also compared to results for MERIS validation from the literature and the current S3 Level-2 Water (L2W) standard processor from EUMETSAT. The Chl-a product showed a substantial improvement (MNB 21%, RMSE 88%, APD 96%, n = 27) compared to concentrations derived from the Medium Resolution Imaging Spectrometer (MERIS), with a strong underestimation of higher values. TSM performed within an error comparable to MERIS data with a mean normalized bias (MNB) 25%, root-mean square error (RMSE) 73%, average absolute percentage difference (APD) 63% n = 23). Coloured Dissolved Organic Matter (CDOM) absorption retrieval has also improved substantially when using the product “iop_adg” (i.e., the sum of organic detritus and Gelbstoff absorption at 443 nm) as a proxy (MNB 8%, RMSE 56%, APD 54%, n = 18). The local SD (MNB 6%, RMSE 62%, APD 60%, n = 35) and turbidity (MNB 3%, RMSE 35%, APD 34%, n = 29) algorithms showed very good agreement with in situ data. We recommend the use of the SNAP C2RCC with regionally adjusted TSM-specific scatter for water product retrieval as well as the regional turbidity algorithm for Baltic Sea monitoring. Besides documenting the evaluation of the C2RCC processor, this paper may also act as a handbook on the validation of Ocean Colour data.


Sign in / Sign up

Export Citation Format

Share Document