Forward and Inverse L-Band Radiative Transfer Modeling over the Dry Chaco, Using SMOS Observations, Land Surface Modeling and in Situ Data

Author(s):  
Frederike Vincent ◽  
Michiel Maertens ◽  
Michel Bechtold ◽  
Esteban Jobbagy ◽  
Rolf H. Reichle ◽  
...  
2021 ◽  
Author(s):  
Alejandro Corbea-Pérez ◽  
Gonçalo Vieira ◽  
Carmen Recondo ◽  
Joana Baptista ◽  
Javier F.Calleja ◽  
...  

<p>Land surface temperature is an important factor for permafrost modelling as well as for understanding the dynamics of Antarctic terrestrial ecosystems (Bockheim et al. 2008). In the South Shetland Islands the distribution of permafrost is complex (Vieira et al. 2010) and the use of remote sensing data is essential since the installation and maintenance of an extensive network of ground-based stations are impossible. Therefore, it is important to evaluate the applicability of satellites and sensors by comparing data with in-situ observations. In this work, we present the results from the analysis of land surface temperatures from Barton Peninsula, an ice-free area in King George Island (South Shetlands). We have studied the period from March 1, 2019 to January 31, 2020 using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and in-situ data from 6 ground temperature loggers. MOD11A1 and MYD11A1 products, from TERRA and AQUA satellites, respectively, were used, following the application of MODIS quality filters. Given the scarce number of high-quality data as defined by MODIS, all average LST with error ≤ 2K were included. Dates with surface temperature below -20ºC, which are rare in the study area, and dates when the difference between MODIS and in-situ data exceeded 10ºC were also examined. In both cases, those days on which MOD09GA/MYD09GA products showed cloud cover were eliminated. Eight in-situ ground temperature measurements per day were available, from which the one nearest to the time of satellite overpass was selected for comparison with MODIS-LST. The results obtained show a better correlation with daytime data than with nighttime data. Specifically, the best results are obtained with daytime data from AQUA (R<sup>2</sup> between 0.55 and 0.81). With daytime data, correlation between MODIS-LST and in-situ data was verified with relative humidity (RH) values provided by King Sejong weather station, located in the study area. When RH is lower, the correlation between LST and in-situ data improves: we obtained correlation coefficients between 0.6 - 0.7 for TERRA data and 0.8 - 0.9 for AQUA data with RH values lower than 80%. The results suggest that MODIS can be used for temperature estimation in the ice-free areas of the Maritime Antarctic.</p><p>References:</p><p>Bockheim, J. G., Campbell, I. B., Guglielmin, M., and López- Martınez, J.: Distribution of permafrost types and buried ice in ice free areas of Antarctica, in: 9th International Conference on Permafrost, 28 June–3 July 2008, Proceedings, University of Alaska Press, Fairbanks, USA, 2008, 125–130.</p><p>Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A. A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D. A.; Goryachkin, S.; López-Martínez, J.; Meiklejohn, I.; Raffi, R.; Ramos, M.; Schaefer, C.; Serrano, E.; Simas, F.; Sletten, R.; Wagner, D. Thermal State of Permafrost and Active-layer Monitoring in the Antarctic: Advances During the International Polar Year 2007-2009. Permafr. Periglac. Process. 2010, 21, 182–197.</p><p> </p><p>Acknowledgements</p><p>This work was made possible by an internship at the IGOT, University of Lisbon, Portugal, funded by the Principality of Asturias (code EB20-16).</p><p> </p>


2020 ◽  
Vol 12 (4) ◽  
pp. 650
Author(s):  
Pablo Sánchez-Gámez ◽  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Marcos Portabella

The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) missions are providing brightness temperature measurements at 1.4 GHz (L-band) for about 10 and 4 years respectively. One of the new areas of geophysical exploitation of L-band radiometry is on thin (i.e., less than 1 m) Sea Ice Thickness (SIT), for which theoretical and empirical retrieval methods have been proposed. However, a comprehensive validation of SIT products has been hindered by the lack of suitable ground truth. The in-situ SIT datasets most commonly used for validation are affected by one important limitation: They are available mainly during late winter and spring months, when sea ice is fully developed and the thickness probability density function is wider than for autumn ice and less representative at the satellite spatial resolution. Using Upward Looking Sonar (ULS) data from the Woods Hole Oceanographic Institution (WHOI), acquired all year round, permits overcoming the mentioned limitation, thus improving the characterization of the L-band brightness temperature response to changes in thin SIT. State-of-the-art satellite SIT products and the Cumulative Freezing Degree Days (CFDD) model are verified against the ULS ground truth. The results show that the L-band SIT can be meaningfully retrieved up to 0.6 m, although the signal starts to saturate at 0.3 m. In contrast, despite the simplicity of the CFDD model, its predicted SIT values correlate very well with the ULS in-situ data during the sea ice growth season. The comparison between the CFDD SIT and the current L-band SIT products shows that both the sea ice concentration and the season are fundamental factors influencing the quality of the thickness retrieval from L-band satellites.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-53 ◽  
Author(s):  
Harry Vereecken ◽  
Lutz Weihermüller ◽  
Shmuel Assouline ◽  
Jirka Šimůnek ◽  
Anne Verhoef ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 1336 ◽  
Author(s):  
Ling Wang ◽  
Xiuqing Hu ◽  
Lin Chen ◽  
Lingli He

The FengYun-3 (FY-3) Visible Infrared Radiometer (VIRR), along with its predecessor, the Multispectral Visible Infrared Scanning Radiometer (MVISR), onboard the FY-1C and FY-1D, has collected continuous daily global observations for 18 years. Achieving accurate and consistent calibration for VIRR reflective solar bands (RSBs) has been challenging, as there is no onboard calibrator and the frequency of in situ vicarious calibration is limited. In this study, a new set of reflectance calibration coefficients were derived for RSBs of the FY-3A, FY-3B, and FY-3C VIRRs using a multisite (MST) calibration method. This method is an extension of a previous MST calibration method, which relies on radiative transfer modeling over the multiple stable earth sites, and no synchronous in situ measurements are needed; hence, it can be used to update the VIRR calibration on a daily basis. The on-orbit radiometric changes of the VIRR onboard the FY-3 series were assessed based on analyses of new sets of calibration slopes. Then, all recalibrated VIRR reflectance data over Libya 4, the most frequently used stable Earth site, were compared with those provided from the Level 1B (L1B) product. Additional validation was performed by comparing the recalibrated VIRR data with those derived from radiative transfer simulations using measurements from automatic calibration instruments in Dunhuang. The results indicate that the radiometric response changes of the VIRRs onboard FY-3A and FY-3B were larger than those of FY-3C VIRR and were wavelength dependent. The current approach can provide consistent VIRR reflectances across different FY-3 satellite platforms. After recalibration, differences in top-of-atmosphere (TOA) reflectance data across different VIRRs during the whole lifetime decreased from 5–10% to less than 3%. The comparison with the automatic calibration method indicates that MST calibration shows good accuracy and lower temporal oscillations.


2019 ◽  
Vol 269-270 ◽  
pp. 119-135 ◽  
Author(s):  
Yongjiu Dai ◽  
Hua Yuan ◽  
Qinchuan Xin ◽  
Dagang Wang ◽  
Wei Shangguan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document