Optimizing water delivery system storage and its influence on air pollutant emission reduction

Author(s):  
Steven X. Jin ◽  
Carrie Loya-Smalley ◽  
Eric Tucker ◽  
Awni Qaqish ◽  
Carol J. Miller ◽  
...  
2015 ◽  
Vol 8 ◽  
pp. 24-28
Author(s):  
Steven Jin ◽  
Carol Miller ◽  
Carrie Loya-Smalley ◽  
Eric Tucker ◽  
Awni Qaqish

2018 ◽  
Vol 53 ◽  
pp. 04036 ◽  
Author(s):  
Cheng Jieling ◽  
Li Haibo

When vessels are berthed at ports, the air pollutants emitted by auxiliary engines will cause severe pollution to the ports and surrounding environments. In view of this situation, the author first summarizes the Chinese policies and policies of foreign countries on emission of air pollutants from vessels at berth, and then analyses the current status of and measures for control of air pollutant emission from vessels at berth. Secondly, the author analyses the environmental benefits of using shore power for better controlling air pollutant emission from vessels at berth, compares vessels using shore power with vessels using generated power in the energy conservation and emission reduction effects based on the fuel consumption rate of different auxiliary engines and current status of pollutant emission from power generation in China etc., analyses the current status of shore power application in China, estimates the energy conserved and emission reduced when shore power is used by vessels at berth. Thirdly, the author identifies the scale of electric energy replacement by, and environmental benefits of, shore power at ports in China. This paper delivers innovative approaches to the comparison between the effects of energy conservation and emission reduction based on fuel consumption rates of different auxiliary engines and estimation of conserved energy and reduced emission.


Author(s):  
Xuan Yang ◽  
Yue Wang ◽  
Di Chen ◽  
Xue Tan ◽  
Xue Tian ◽  
...  

Improving air quality is an urgent task for the Beijing–Tianjin–Hebei (BTH) region in China. In 2018, utilizing 365 days’ daily concentration data of six air pollutants (including PM2.5, PM10, SO2, NO2, CO and O3) at 947 air quality grid monitoring points of 13 cities in the BTH region and controlling the meteorological factors, this paper takes the implementation of the Blue Sky Defense War (BSDW) policy as a quasi-natural experiment to examine the emission reduction effect of the policy in the BTH region by applying the difference-in-difference method. Results show that the policy leads to the significant reduction of the daily average concentration of PM2.5, PM10, SO2, O3 by −1.951 μg/m3, −3.872 μg/m3, −1.902 μg/m3, −7.882 μg/m3 and CO by −0.014 mg/m3, respectively. The results of the robustness test support the aforementioned conclusions. However, this paper finds that the concentration of NO2 increases significantly (1.865 μg/m3). In winter heating seasons, the concentration of SO2, CO and O3 decrease but PM2.5, PM10 and NO2 increase significantly. Besides, resource intensive cities, non-key environmental protection cities and cities in the north of the region have great potential for air pollutant emission reduction. Finally, policy suggestions are recommended; these include setting specific goals at the city level, incorporating more cities into the list of key environmental protection cities, refining the concrete indicators of domestic solid fuel, and encouraging and enforcing clean heating diffusion.


2017 ◽  
Vol 3 (6) ◽  
Author(s):  
Adyati Yudison ◽  
Driejana Driejana ◽  
Iman K. Reksowardojo ◽  
Aminudin Sulaeman

2014 ◽  
Vol 1073-1076 ◽  
pp. 2719-2727
Author(s):  
Bing Qiao ◽  
Yi Chao Liu ◽  
Wei Jian He ◽  
Yu Jun Tian ◽  
Yue Li ◽  
...  

Based on methods of the fuel consumption, statistical and analogy analysis, the throughput amount method was established to calculate the emissions from port handling, and the minimum mileage method was established to estimate emissions from port cargo highway distributing. In the methods, some coefficients were used obtained by investigations: the current container handling emission factors of NOx, VOCs, CO, PM2.5 and SOx are 1.64, 0.21, 0.42, 0.01 and 0.29 t/TEU; the energy consumption of the unit throughput is 4.12 tons of standard coal per 104tons; the ratios of the unit non container cargoe handling energy consumption for coastal and inland river ports to those of container cargo are 0.631 and 0.405; the ratio of the unit non container cargoe highway distributing energy consumption to those of container cargo is 0.365. The calculation results show that the total emissions from the cargo handling and highway distributing of 2013 in China for NOx, VOCs, CO, PM2.5 and SOx are 54.365, 14.821, 24.631, 5.599 and 16.802 104tons, and the emissions from highway distributing are 4.21, 10.02, 8.24, 8.22 and 8.19 times of the emissions from port handling facilities. According to energy saving and emission reduction measures, formulas were established to calculate air pollutant emissions after the new added measures. Analyzing the real performance of the measures implemented since 2001 and predicting its trend of development, a scenario was designed, in which the Chinese port throughput continuously rises while the energy saving and emission reduction efforts gradually increase by 2020: the popularities of the energy saving measure of "oil changing to electricity" and the clean fuel measure of "oil changing to gas" reach 100% and 83%; the proportion of power plants with 95% desulfurization and denitrification reaches 100%; the energy saving and emission reduction efficiency of port cargo distributing optimization measures reaches 40%. Under this scenario, the prediction shows that during the port throughput increasing approximately 4.2 times from 2005 to 2020, the air pollutant emissions will be reduced significantly, returning to a lower level compared with 2005. The above methods and results can be used to support the decision-making and the implementation of emission reduction measures for the national, regional and port enterprises.


2021 ◽  
Vol 13 (12) ◽  
pp. 6785
Author(s):  
Bing Wang ◽  
Yifan Wang ◽  
Yuqing Zhao

Since entering the industrialized era, China’s greenhouse gas emissions and air pollutant emissions have increased rapidly. China is the country with the most greenhouse gas emissions, and it is also facing serious local air pollution problems. China’s industrial sector is the largest contributor to CO2 and air pollutants. The resulting climate change and air pollution issues have caused China to face double pressures. This article uses the CO2 and comprehensive air pollutant emission data of China’s industrial sector as a starting point and uses econometric research methods to explore the synergy between China’s industrial carbon emission reduction and industrial comprehensive air pollutant emission reduction. The synergistic effect between industrial carbon emissions and industrial comprehensive air pollutant emissions has been quantified, and the transmission path of the synergistic effect has been explored. The empirical results show that there are benefits of synergistic governance between climate change and air pollution in China’s industrial sector. Every 1000 tons of carbon reduction in the industrial sector will result in 1 ton of comprehensive air pollutant reduction. The increase in R&D expenditure in the energy and power sector can significantly promote the reduction of air pollutants in the industrial sector. Increasing the intensity of environmental regulations is the main expansion path for synergy. However, in eastern, central, and western China, the synergy is not the same. Therefore, it is necessary to formulate regionally differentiated emission reduction policies. The research conclusions of this article can provide policy references for the coordinated governance of climate change and air pollution in China.


2019 ◽  
Vol 99 (3) ◽  
pp. 1277-1293
Author(s):  
Kejun Jiang ◽  
Sha Chen ◽  
Chenmin He ◽  
Jia Liu ◽  
Sun Kuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document