Analysis of the synergistic effects of air pollutant emission reduction and carbon emissions at coal‐fired power plants in China

Author(s):  
Lili Du ◽  
Haijun Zhao ◽  
Haoyue Tang ◽  
Ping Jiang ◽  
Weichun Ma
2014 ◽  
Vol 1073-1076 ◽  
pp. 2719-2727
Author(s):  
Bing Qiao ◽  
Yi Chao Liu ◽  
Wei Jian He ◽  
Yu Jun Tian ◽  
Yue Li ◽  
...  

Based on methods of the fuel consumption, statistical and analogy analysis, the throughput amount method was established to calculate the emissions from port handling, and the minimum mileage method was established to estimate emissions from port cargo highway distributing. In the methods, some coefficients were used obtained by investigations: the current container handling emission factors of NOx, VOCs, CO, PM2.5 and SOx are 1.64, 0.21, 0.42, 0.01 and 0.29 t/TEU; the energy consumption of the unit throughput is 4.12 tons of standard coal per 104tons; the ratios of the unit non container cargoe handling energy consumption for coastal and inland river ports to those of container cargo are 0.631 and 0.405; the ratio of the unit non container cargoe highway distributing energy consumption to those of container cargo is 0.365. The calculation results show that the total emissions from the cargo handling and highway distributing of 2013 in China for NOx, VOCs, CO, PM2.5 and SOx are 54.365, 14.821, 24.631, 5.599 and 16.802 104tons, and the emissions from highway distributing are 4.21, 10.02, 8.24, 8.22 and 8.19 times of the emissions from port handling facilities. According to energy saving and emission reduction measures, formulas were established to calculate air pollutant emissions after the new added measures. Analyzing the real performance of the measures implemented since 2001 and predicting its trend of development, a scenario was designed, in which the Chinese port throughput continuously rises while the energy saving and emission reduction efforts gradually increase by 2020: the popularities of the energy saving measure of "oil changing to electricity" and the clean fuel measure of "oil changing to gas" reach 100% and 83%; the proportion of power plants with 95% desulfurization and denitrification reaches 100%; the energy saving and emission reduction efficiency of port cargo distributing optimization measures reaches 40%. Under this scenario, the prediction shows that during the port throughput increasing approximately 4.2 times from 2005 to 2020, the air pollutant emissions will be reduced significantly, returning to a lower level compared with 2005. The above methods and results can be used to support the decision-making and the implementation of emission reduction measures for the national, regional and port enterprises.


Author(s):  
Xiliang Hong ◽  
Jianhong Chen ◽  
Deren Sheng ◽  
Wei Li

Owing to the growing environmental concerns, super-critical and ultra-supercritical coal-fired power plants dominate the electricity generation with the demand of near-zero air pollutant emission in China. Therefore, it is highly expected to assess the environmental impact and optimize the design at global and local levels. Exergoenvironmental analysis is a valid approach to investigate the formation of environmental impacts (EIs) associated with energy conversion systems at the component level. It generates information crucial for designing systems with a lower overall environmental impact, based on life cycle assessment (LCA) and exergy analysis. A 600 MW supercritical coal-fired system with and without dust, SO2 and NOx mitigation controls was analyzed. Heat transfer in the boiler, condenser (CND), low pressure cylinder (LP), air preheater (APH) show high potential to decrease the environmental impact due to high exergy destructions. The deaerator (DEA), induced draft fan (IDF), forced draft fan (FDF) should be focussed on construction design and manufacturing optimization. Purification units reveal high benefit for reducing EI produced by coal combustion, but there is a large space for the EI saving for it. The specific EI of electricity in China is much greater than European.


2018 ◽  
Vol 53 ◽  
pp. 04036 ◽  
Author(s):  
Cheng Jieling ◽  
Li Haibo

When vessels are berthed at ports, the air pollutants emitted by auxiliary engines will cause severe pollution to the ports and surrounding environments. In view of this situation, the author first summarizes the Chinese policies and policies of foreign countries on emission of air pollutants from vessels at berth, and then analyses the current status of and measures for control of air pollutant emission from vessels at berth. Secondly, the author analyses the environmental benefits of using shore power for better controlling air pollutant emission from vessels at berth, compares vessels using shore power with vessels using generated power in the energy conservation and emission reduction effects based on the fuel consumption rate of different auxiliary engines and current status of pollutant emission from power generation in China etc., analyses the current status of shore power application in China, estimates the energy conserved and emission reduced when shore power is used by vessels at berth. Thirdly, the author identifies the scale of electric energy replacement by, and environmental benefits of, shore power at ports in China. This paper delivers innovative approaches to the comparison between the effects of energy conservation and emission reduction based on fuel consumption rates of different auxiliary engines and estimation of conserved energy and reduced emission.


2019 ◽  
Vol 11 (11) ◽  
pp. 3099 ◽  
Author(s):  
Shengxian Ge ◽  
Xianyu Yu ◽  
Dequn Zhou ◽  
Xiuzhi Sang

To control growing environmental problems, the pollution rights trading (PRT) center was established in Jiaxing in 2007, and China officially joined the carbon emission reduction market (NCET) in 2011. Since power enterprises are the main participants in the NCET market and PRT market, the integrated effect of the NCET market and PRT market on power enterprise profit and the regional environment is one of the major issues that needs to be taken into consideration. Based on system dynamics (SD) theory, we propose an NCET-PRT simulation model for power enterprises in Chongqing. Through analyzing parameters of carbon trading price, free ratio, and emission trading prices, 12 different simulation scenarios are configured for sensitivity analysis. Based on the simulation results, the following observations can be obtained: (1) NCET and PRT can effectively promote the performance of enterprises’ carbon emissions reduction and regional pollutant emission reduction but will have a minor negative impact on the industrial economy at the same time; (2) The trading mechanism is interactive; if the carbon emissions trading (NCET) mechanism is implemented separately, the emission of pollutants will be reduced significantly. However, the implementation of pollution rights trading (PRT) alone cannot significantly reduce CO2 emissions; (3) At an appropriate level, NCET and PRT can be enhanced to achieve a maximum emissions reduction effect at a minimum economic cost.


2017 ◽  
Author(s):  
Lei Zhang ◽  
Tianliang Zhao ◽  
Sunling Gong ◽  
Shaofei Kong ◽  
Lili Tang ◽  
...  

Abstract. Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting Model with Chemistry (WRF-Chem), two simulations were executed to assess the atmospheric environmental change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that (1) compared to the power emissions of MEIC, PM2.5, PM10, SO2 and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs were higher in the UEIPP, reflecting a large discrepancy in the power emissions over East China; (2) In accordance with the changes of UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC and CO, whose concentrations in atmosphere are highly dependent on emission changes. (3) Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced, reflecting by increased oxidizing agents, e.g. O3 and OH, thus directly strengthened the chemical production from SO2 and NOx to sulfate and nitrate, which offset the reduction of primary PM2.5 emissions especially in the haze days. This study indicated the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with the implications on air quality and environmental changes.


2011 ◽  
Vol 281 ◽  
pp. 211-214
Author(s):  
He Rui Cui ◽  
Lu Chen ◽  
Da Fang Qiu

Thermal power industry promotes economic development in a high speed, and it also brings the problem of resources and the environment. Building the evaluation index system of the thermal power plants’ ability of energy saving and emission reduction, we made use of the analytic hierarchy process to determine the weight. And the fuzzy comprehensive evaluation was applied to a thermal power plant in Shandong Province. We obtain following conclusion: the primer factor which confines its ability of energy conservation and emission reduction is pollutant emission. On this basis, we put forward the specific implementation measures from fiscal policy, tax policy and monetary policy, aim is to accelerate the development of China’s energy saving and emission reduction.


Author(s):  
Steven X. Jin ◽  
Carrie Loya-Smalley ◽  
Eric Tucker ◽  
Awni Qaqish ◽  
Carol J. Miller ◽  
...  

Author(s):  
Xuan Yang ◽  
Yue Wang ◽  
Di Chen ◽  
Xue Tan ◽  
Xue Tian ◽  
...  

Improving air quality is an urgent task for the Beijing–Tianjin–Hebei (BTH) region in China. In 2018, utilizing 365 days’ daily concentration data of six air pollutants (including PM2.5, PM10, SO2, NO2, CO and O3) at 947 air quality grid monitoring points of 13 cities in the BTH region and controlling the meteorological factors, this paper takes the implementation of the Blue Sky Defense War (BSDW) policy as a quasi-natural experiment to examine the emission reduction effect of the policy in the BTH region by applying the difference-in-difference method. Results show that the policy leads to the significant reduction of the daily average concentration of PM2.5, PM10, SO2, O3 by −1.951 μg/m3, −3.872 μg/m3, −1.902 μg/m3, −7.882 μg/m3 and CO by −0.014 mg/m3, respectively. The results of the robustness test support the aforementioned conclusions. However, this paper finds that the concentration of NO2 increases significantly (1.865 μg/m3). In winter heating seasons, the concentration of SO2, CO and O3 decrease but PM2.5, PM10 and NO2 increase significantly. Besides, resource intensive cities, non-key environmental protection cities and cities in the north of the region have great potential for air pollutant emission reduction. Finally, policy suggestions are recommended; these include setting specific goals at the city level, incorporating more cities into the list of key environmental protection cities, refining the concrete indicators of domestic solid fuel, and encouraging and enforcing clean heating diffusion.


2017 ◽  
Vol 3 (6) ◽  
Author(s):  
Adyati Yudison ◽  
Driejana Driejana ◽  
Iman K. Reksowardojo ◽  
Aminudin Sulaeman

Sign in / Sign up

Export Citation Format

Share Document