Dynamical properties of neural nets using competitive activation mechanisms

Author(s):  
M. Benaim ◽  
M. Samuelides
1993 ◽  
Vol 5 (2) ◽  
pp. 242-259 ◽  
Author(s):  
Sungzoon Cho ◽  
James A. Reggia

Competitive activation mechanisms introduce competitive or inhibitory interactions between units through functional mechanisms instead of inhibitory connections. A unit receives input from another unit proportional to its own activation as well as to that of the sending unit and the connection strength between the two. This, plus the finite output from any unit, induces competition among units that receive activation from the same unit. Here we present a backpropagation learning rule for use with competitive activation mechanisms and show empirically how this learning rule successfully trains networks to perform an exclusive-OR task and a diagnosis task. In particular, networks trained by this learning rule are found to outperform standard backpropagation networks with novel patterns in the diagnosis problem. The ability of competitive networks to bring about context-sensitive competition and cooperation among a set of units proved to be crucial in diagnosing multiple disorders.


1996 ◽  
Vol 07 (02) ◽  
pp. 129-147 ◽  
Author(s):  
ERIC L. GRUNDSTROM ◽  
JAMES A. REGGIA

In the construction of neural networks involving associative recall, information is sometimes best encoded with a local representation. Moreover, a priori knowledge can lead to a natural selection of connection weights for these networks. With predetermined and fixed weights, standard learning algorithms that work by altering connection strengths are unable to train such networks. To address this problem, this paper derives a supervised learning rule based on gradient descent, where connection weights are fixed and a network is trained by changing the activation rule. It incorporates both traditional and competitive activation mechanisms, the latter being an efficient method for instilling competition in a network. The learning rule has been implemented, and the results from several test networks demonstrate that it works effectively.


1999 ◽  
Vol 173 ◽  
pp. 327-338 ◽  
Author(s):  
J.A. Fernández ◽  
T. Gallardo

AbstractThe Oort cloud probably is the source of Halley-type (HT) comets and perhaps of some Jupiter-family (JF) comets. The process of capture of Oort cloud comets into HT comets by planetary perturbations and its efficiency are very important problems in comet ary dynamics. A small fraction of comets coming from the Oort cloud − of about 10−2− are found to become HT comets (orbital periods < 200 yr). The steady-state population of HT comets is a complex function of the influx rate of new comets, the probability of capture and their physical lifetimes. From the discovery rate of active HT comets, their total population can be estimated to be of a few hundreds for perihelion distancesq <2 AU. Randomly-oriented LP comets captured into short-period orbits (orbital periods < 20 yr) show dynamical properties that do not match the observed properties of JF comets, in particular the distribution of their orbital inclinations, so Oort cloud comets can be ruled out as a suitable source for most JF comets. The scope of this presentation is to review the capture process of new comets into HT and short-period orbits, including the possibility that some of them may become sungrazers during their dynamical evolution.


2000 ◽  
Vol 10 (PR7) ◽  
pp. Pr7-321-Pr7-324
Author(s):  
V. Villari ◽  
A. Faraone, ◽  
S. Magazù, ◽  
G. Maisano ◽  
R. Ponterio

Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the construction as well as the algebraic and dynamical properties of pseudo-Anosov homeomorphisms. It first presents five different constructions of pseudo-Anosov mapping classes: branched covers, constructions via Dehn twists, homological criterion, Kra's construction, and a construction for braid groups. It then proves a few fundamental facts concerning stretch factors of pseudo-Anosov homeomorphisms, focusing on the theorem that pseudo-Anosov stretch factors are algebraic integers. It also considers the spectrum of pseudo-Anosov stretch factors, along with the special properties of those measured foliations that are the stable (or unstable) foliations of some pseudo-Anosov homeomorphism. Finally, it describes the orbits of a pseudo-Anosov homeomorphism as well as lengths of curves and intersection numbers under iteration.


Author(s):  
Richard C. Kittler

Abstract Analysis of manufacturing data as a tool for failure analysts often meets with roadblocks due to the complex non-linear behaviors of the relationships between failure rates and explanatory variables drawn from process history. The current work describes how the use of a comprehensive engineering database and data mining technology over-comes some of these difficulties and enables new classes of problems to be solved. The characteristics of the database design necessary for adequate data coverage and unit traceability are discussed. Data mining technology is explained and contrasted with traditional statistical approaches as well as those of expert systems, neural nets, and signature analysis. Data mining is applied to a number of common problem scenarios. Finally, future trends in data mining technology relevant to failure analysis are discussed.


Sign in / Sign up

Export Citation Format

Share Document