Exploring Label Correlations for Partitioning the Label Space in Multi-label Classification

Author(s):  
Elaine Cecilia Gatto ◽  
Mauri Ferrandin ◽  
Ricardo Cerri
Keyword(s):  
2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Min-Ling Zhang ◽  
Jun-Peng Fang ◽  
Yi-Bo Wang

In multi-label classification, the task is to induce predictive models which can assign a set of relevant labels for the unseen instance. The strategy of label-specific features has been widely employed in learning from multi-label examples, where the classification model for predicting the relevancy of each class label is induced based on its tailored features rather than the original features. Existing approaches work by generating a group of tailored features for each class label independently, where label correlations are not fully considered in the label-specific features generation process. In this article, we extend existing strategy by proposing a simple yet effective approach based on BiLabel-specific features. Specifically, a group of tailored features is generated for a pair of class labels with heuristic prototype selection and embedding. Thereafter, predictions of classifiers induced by BiLabel-specific features are ensembled to determine the relevancy of each class label for unseen instance. To thoroughly evaluate the BiLabel-specific features strategy, extensive experiments are conducted over a total of 35 benchmark datasets. Comparative studies against state-of-the-art label-specific features techniques clearly validate the superiority of utilizing BiLabel-specific features to yield stronger generalization performance for multi-label classification.


2021 ◽  
Vol 25 (4) ◽  
pp. 1013-1029
Author(s):  
Zeeshan Zeeshan ◽  
Qurat ul Ain ◽  
Uzair Aslam Bhatti ◽  
Waqar Hussain Memon ◽  
Sajid Ali ◽  
...  

With the increase of online businesses, recommendation algorithms are being researched a lot to facilitate the process of using the existing information. Such multi-criteria recommendation (MCRS) helps a lot the end-users to attain the required results of interest having different selective criteria – such as combinations of implicit and explicit interest indicators in the form of ranking or rankings on different matched dimensions. Current approaches typically use label correlation, by assuming that the label correlations are shared by all objects. In real-world tasks, however, different sources of information have different features. Recommendation systems are more effective if being used for making a recommendation using multiple criteria of decisions by using the correlation between the features and items content (content-based approach) or finding a similar user rating to get targeted results (Collaborative filtering). To combine these two filterings in the multicriteria model, we proposed a features-based fb-knn multi-criteria hybrid recommendation algorithm approach for getting the recommendation of the items by using multicriteria features of items and integrating those with the correlated items found in similar datasets. Ranks were assigned to each decision and then weights were computed for each decision by using the standard deviation of items to get the nearest result. For evaluation, we tested the proposed algorithm on different datasets having multiple features of information. The results demonstrate that proposed fb-knn is efficient in different types of datasets.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-24
Author(s):  
Yaojin Lin ◽  
Qinghua Hu ◽  
Jinghua Liu ◽  
Xingquan Zhu ◽  
Xindong Wu

In multi-label learning, label correlations commonly exist in the data. Such correlation not only provides useful information, but also imposes significant challenges for multi-label learning. Recently, label-specific feature embedding has been proposed to explore label-specific features from the training data, and uses feature highly customized to the multi-label set for learning. While such feature embedding methods have demonstrated good performance, the creation of the feature embedding space is only based on a single label, without considering label correlations in the data. In this article, we propose to combine multiple label-specific feature spaces, using label correlation, for multi-label learning. The proposed algorithm, mu lti- l abel-specific f eature space e nsemble (MULFE), takes consideration label-specific features, label correlation, and weighted ensemble principle to form a learning framework. By conducting clustering analysis on each label’s negative and positive instances, MULFE first creates features customized to each label. After that, MULFE utilizes the label correlation to optimize the margin distribution of the base classifiers which are induced by the related label-specific feature spaces. By combining multiple label-specific features, label correlation based weighting, and ensemble learning, MULFE achieves maximum margin multi-label classification goal through the underlying optimization framework. Empirical studies on 10 public data sets manifest the effectiveness of MULFE.


Author(s):  
Chen Chen ◽  
Haobo Wang ◽  
Weiwei Liu ◽  
Xingyuan Zhao ◽  
Tianlei Hu ◽  
...  

Label embedding has been widely used as a method to exploit label dependency with dimension reduction in multilabel classification tasks. However, existing embedding methods intend to extract label correlations directly, and thus they might be easily trapped by complex label hierarchies. To tackle this issue, we propose a novel Two-Stage Label Embedding (TSLE) paradigm that involves Neural Factorization Machine (NFM) to jointly project features and labels into a latent space. In encoding phase, we introduce a Twin Encoding Network (TEN) that digs out pairwise feature and label interactions in the first stage and then efficiently learn higherorder correlations with deep neural networks (DNNs) in the second stage. After the codewords are obtained, a set of hidden layers is applied to recover the output labels in decoding phase. Moreover, we develop a novel learning model by leveraging a max margin encoding loss and a label-correlation aware decoding loss, and we adopt the mini-batch Adam to optimize our learning model. Lastly, we also provide a kernel insight to better understand our proposed TSLE. Extensive experiments on various real-world datasets demonstrate that our proposed model significantly outperforms other state-ofthe-art approaches.


2020 ◽  
Vol 34 (07) ◽  
pp. 12265-12272
Author(s):  
Ya Wang ◽  
Dongliang He ◽  
Fu Li ◽  
Xiang Long ◽  
Zhichao Zhou ◽  
...  

Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is leveraged to boost the performance of multi-label recognition. However, what is the best way for label correlation modeling and how feature learning can be improved with label system awareness are still unclear. In this paper, we propose a label graph superimposing framework to improve the conventional GCN+CNN framework developed for multi-label recognition in the following two aspects. Firstly, we model the label correlations by superimposing label graph built from statistical co-occurrence information into the graph constructed from knowledge priors of labels, and then multi-layer graph convolutions are applied on the final superimposed graph for label embedding abstraction. Secondly, we propose to leverage embedding of the whole label system for better representation learning. In detail, lateral connections between GCN and CNN are added at shallow, middle and deep layers to inject information of label system into backbone CNN for label-awareness in the feature learning process. Extensive experiments are carried out on MS-COCO and Charades datasets, showing that our proposed solution can greatly improve the recognition performance and achieves new state-of-the-art recognition performance.


Author(s):  
Vivek Gupta ◽  
Rahul Wadbude ◽  
Nagarajan Natarajan ◽  
Harish Karnick ◽  
Prateek Jain ◽  
...  

We present a label embedding based approach to large-scale multi-label learning, drawing inspiration from ideas rooted in distributional semantics, specifically the Skip Gram Negative Sampling (SGNS) approach, widely used to learn word embeddings. Besides leading to a highly scalable model for multi-label learning, our approach highlights interesting connections between label embedding methods commonly used for multi-label learning and paragraph embedding methods commonly used for learning representations of text data. The framework easily extends to incorporating auxiliary information such as label-label correlations; this is crucial especially when many training instances are only partially annotated. To facilitate end-to-end learning, we develop a joint learning algorithm that can learn the embeddings as well as a regression model that predicts these embeddings for the new input to be annotated, via efficient gradient based methods. We demonstrate the effectiveness of our approach through an extensive set of experiments on a variety of benchmark datasets, and show that the proposed models perform favorably as compared to state-of-the-art methods for large-scale multi-label learning.


Sign in / Sign up

Export Citation Format

Share Document