Research of a Fault Prediction Method of the Electronic Equipment Based on ARMA - Elman Neural Network Model

Author(s):  
Xiaodong Liu ◽  
Jinyu Deng ◽  
Jingli Yang ◽  
Yue Li
Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1113 ◽  
Author(s):  
Chenming Li ◽  
Lei Zhu ◽  
Zhiyao He ◽  
Hongmin Gao ◽  
Yao Yang ◽  
...  

The prediction of medium- and long-term runoff is of great significance to the comprehensive utilization of water resources. Building an adaptive data-driven runoff prediction model by automatic identification of multivariate time series change in runoff forecasting and identifying its influence degree is an attractive and intricate task. At present, the commonly used screening factor method is correlational analysis; others offer multi-collinearity. If these factors are directly input into the model, the parameters of the model tend to increase, and the excessive redundancy and noise adversely affects the prediction results of the model. On the basis of previous studies on medium- and long-term runoff prediction methods, this paper proposes an Elman Neural Network (ENN) adaptive runoff prediction method based on normalized mutual information (NMI) and kernel principal component analysis (KPCA). In this method, the features of the screening factors are extracted automatically by using the mutual information automatic screening factor, and then input into the Elman Neural Network for training. With less features, the parameters of the Elman Neural Network model can be reduced, and the problem of overfitting of the Elman Neural Network model is effectively alleviated. The method is evaluated by using the annual average runoff data of Jinping hydropower station in Chengdu, China, from 2007 to 2011. The maximum relative error of multiple forecasts was found to be less than 16%, and forecast effect was good. The accuracy of prediction is further improved by averaging the results of multiple forecasts.


2011 ◽  
Vol 287-290 ◽  
pp. 1112-1115
Author(s):  
Jun Hong Zhang

In order to reduce the coke consumption of Blast Furnace(BF),a relevance analysis is carried out for operation parameters and fuel rate of BF,and a prediction method that is combining clustering analysis and artificial neural network for coke rate is proposed. The data cluster is divided into several classes by clustering analysis,the data similarity is high,and the neural network model is used to realize the prediction of coke rate. By combining the neural network with clustering analysis,the data in one BF is simulated,and the results are compared with the traditional neural network model. The result shows that the improved neural network has a higher accuracy, the average absolute error can be decreased by 3.13kg/t, and the average relative error can be decreased by 5.19%, it will have a good using foreground.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1662
Author(s):  
Wei Hao ◽  
Feng Liu

Predicting the axle temperature states of the high-speed train under operation in advance and evaluating working states of axle bearings is important for improving the safety of train operation and reducing accident risks. The method of monitoring the axle temperature of a train under operation, combined with the neural network prediction method, was applied. A total of 36 sensors were arranged at key positions such as the axle bearings of the train gearbox and the driving end of the traction motor. The positions of the sensors were symmetrical. Axle temperature measurements over 11 days with more than 38,000 km were obtained. The law of the change of the axle temperature in each section was obtained in different environments. The resultant data from the previous 10 days were used to train the neural network model, and a total of 800 samples were randomly selected from eight typical locations for the prediction of axle temperature over the following 3 min. In addition, the results predicted by the neural network method and the GM (1,1) method were compared. The results show that the predicted temperature of the trained neural network model is in good agreement with the experimental temperature, with higher precision than that of the GM (1,1) method, indicating that the proposed method is sufficiently accurate and can be a reliable tool for predicting axle temperature.


2021 ◽  
Vol 25 (2) ◽  
pp. 169-177
Author(s):  
Chaoyang Shi ◽  
Zhen Zhang

To better predict the water resources carrying capacity and guide the social and economic activities, a prediction method of regional water resources carrying capacity is proposed based on an artificial neural network. Zhaozhou County is selected as the research area of water resources carrying capacity prediction, and its natural geographical characteristics, social economy, and water resources situation are explored. According to the regional water resources quantity and utilization characteristics and evaluation emphasis, the evaluation index system of water resources carrying capacity is constructed to evaluate the importance and correlation of water resource carrying capacity. The pressure degree of water resources carrying capacity is divided into five grades. According to the evaluation standard of bearing capacity, the artificial intelligence BP neural network model is constructed. Based on the main impact factors of water resources carrying capacity in this area, the water resources carrying capacity grade is obtained by weight calculation and convergence iteration by using neural network model and influence factor data to realize the prediction of water resources carrying capacity. The research results show that the network model can meet the demand for precision. The prediction results have a high degree of fit with the actual data, indicating that human intelligence can obtain accurate prediction results in water resources carrying capacity prediction.


Sign in / Sign up

Export Citation Format

Share Document