The real-time object detection algorithm based on ORBP and cascade SVM

Author(s):  
Wei Zhu ◽  
Qian-Liang Fu ◽  
Jun-Qi Bai
2013 ◽  
Vol 380-384 ◽  
pp. 919-922
Author(s):  
Chen Xia Guo ◽  
Rui Feng Yang

The paper discusess mainly how to accurately measure the real-time length of fiber optic gyroscope sensing coil (fiber coil) in the process of FOG coil winding. First, using the improved moving target detection algorithm to process the fiber images collected by machine vision. Secondly, using software algorithm to calculate the real-time radius of fiber winding. Finaly, combining the incremental optical encoder with real-time radius to calculate real-time winding length of fiber coil.


2013 ◽  
Vol 846-847 ◽  
pp. 1372-1375
Author(s):  
Wei Zhao ◽  
Li Ming Ye

An optimized collision detection algorithm based on dynamic bounding volume tree is proposed in this paper. First this algorithm adopts spatial division to exclude objects which cant intersect to define the potential intersection areas. Then use a new dynamic OBB bounding volume tree to test whether the intersection happened between the objects in the same grid. At last, this algorithm improves the traditional overlapping test between the primitives for accurate collision detection to accelerate the detection between objects. Compared to the traditional collision detection algorithm based on OBB bounding volume. This algorithm can effectively improve the real-time of the collision detection without affecting the accuracy of original collision detection.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3367 ◽  
Author(s):  
Nan Ding ◽  
Huanbo Gao ◽  
Hongyu Bu ◽  
Haoxuan Ma ◽  
Huaiwei Si

Anomaly detection is an important research direction, which takes the real-time information system from different sensors and conditional information sources into consideration. Based on this, we can detect possible anomalies expected of the devices and components. One of the challenges is anomaly detection in multivariate-sensing time-series in this paper. Based on this situation, we propose RADM, a real-time anomaly detection algorithm based on Hierarchical Temporal Memory (HTM) and Bayesian Network (BN). First of all, we use HTM model to evaluate the real-time anomalies of each univariate-sensing time-series. Secondly, a model of anomalous state detection in multivariate-sensing time-series based on Naive Bayesian is designed to analyze the validity of the above time-series. Lastly, considering the real-time monitoring cases of the system states of terminal nodes in Cloud Platform, the effectiveness of the methodology is demonstrated using a simulated example. Extensive simulation results show that using RADM in multivariate-sensing time-series is able to detect more abnormal, and thus can remarkably improve the performance of real-time anomaly detection.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zuopeng Zhao ◽  
Zhongxin Zhang ◽  
Xinzheng Xu ◽  
Yi Xu ◽  
Hualin Yan ◽  
...  

It is necessary to improve the performance of the object detection algorithm in resource-constrained embedded devices by lightweight improvement. In order to further improve the recognition accuracy of the algorithm for small target objects, this paper integrates 5 × 5 deep detachable convolution kernel on the basis of MobileNetV2-SSDLite model, extracts features of two special convolutional layers in addition to detecting the target, and designs a new lightweight object detection network—Lightweight Microscopic Detection Network (LMS-DN). The network can be implemented on embedded devices such as NVIDIA Jetson TX2. The experimental results show that LMS-DN only needs fewer parameters and calculation costs to obtain higher identification accuracy and stronger anti-interference than other popular object detection models.


2021 ◽  
Vol 13 (21) ◽  
pp. 4401
Author(s):  
Gen Zheng ◽  
Jianhu Zhao ◽  
Shaobo Li ◽  
Jie Feng

With the increasing number of underwater pipeline investigation activities, the research on automatic pipeline detection is of great significance. At this stage, object detection algorithms based on Deep Learning (DL) are widely used due to their abilities to deal with various complex scenarios. However, DL algorithms require massive representative samples, which are difficult to obtain for pipeline detection with sub-bottom profiler (SBP) data. In this paper, a zero-shot pipeline detection method is proposed. First, an efficient sample synthesis method based on SBP imaging principles is proposed to generate samples. Then, the generated samples are used to train the YOLOv5s network and a pipeline detection strategy is developed to meet the real-time requirements. Finally, the trained model is tested with the measured data. In the experiment, the trained model achieved a [email protected] of 0.962, and the mean deviation of the predicted pipeline position is 0.23 pixels with a standard deviation of 1.94 pixels in the horizontal direction and 0.34 pixels with a standard deviation of 2.69 pixels in the vertical direction. In addition, the object detection speed also met the real-time requirements. The above results show that the proposed method has the potential to completely replace the manual interpretation and has very high application value.


2021 ◽  
Vol 13 (24) ◽  
pp. 13834
Author(s):  
Guk-Jin Son ◽  
Dong-Hoon Kwak ◽  
Mi-Kyung Park ◽  
Young-Duk Kim ◽  
Hee-Chul Jung

Supervised deep learning-based foreign object detection algorithms are tedious, costly, and time-consuming because they usually require a large number of training datasets and annotations. These disadvantages make them frequently unsuitable for food quality evaluation and food manufacturing processes. However, the deep learning-based foreign object detection algorithm is an effective method to overcome the disadvantages of conventional foreign object detection methods mainly used in food inspection. For example, color sorter machines cannot detect foreign objects with a color similar to food, and the performance is easily degraded by changes in illuminance. Therefore, to detect foreign objects, we use a deep learning-based foreign object detection algorithm (model). In this paper, we present a synthetic method to efficiently acquire a training dataset of deep learning that can be used for food quality evaluation and food manufacturing processes. Moreover, we perform data augmentation using color jitter on a synthetic dataset and show that this approach significantly improves the illumination invariance features of the model trained on synthetic datasets. The F1-score of the model that trained the synthetic dataset of almonds at 360 lux illumination intensity achieved a performance of 0.82, similar to the F1-score of the model that trained the real dataset. Moreover, the F1-score of the model trained with the real dataset combined with the synthetic dataset achieved better performance than the model trained with the real dataset in the change of illumination. In addition, compared with the traditional method of using color sorter machines to detect foreign objects, the model trained on the synthetic dataset has obvious advantages in accuracy and efficiency. These results indicate that the synthetic dataset not only competes with the real dataset, but they also complement each other.


2019 ◽  
Vol 77 ◽  
pp. 398-408 ◽  
Author(s):  
Shengyu Lu ◽  
Beizhan Wang ◽  
Hongji Wang ◽  
Lihao Chen ◽  
Ma Linjian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document