Classification of rotor blade number of rotor targets micro-motion signal based on CNN

Author(s):  
Ming Long ◽  
Jun Yang ◽  
Saiqiang Xia ◽  
Xu Wei
2021 ◽  
pp. 55-67
Author(s):  
Xiaolong Chen ◽  
Jian Guan ◽  
Jiefang Li ◽  
Weishi Chen

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1637
Author(s):  
Saiqiang Xia ◽  
Jun Yang ◽  
Wanyong Cai ◽  
Chaowei Zhang ◽  
Liangfa Hua ◽  
...  

In order to suppress the strong clutter component and separate the effective fretting component from narrow-band radar echo, a method based on complex variational mode decomposition (CVMD) is proposed in this paper. The CVMD is extended from variational mode decomposition (VMD), which is a recently introduced technique for adaptive signal decomposition, limited to only dealing with the real signal. Thus, the VMD is extended from the real domain to the complex domain firstly. Then, the optimal effective order of singular value is obtained by singular value decomposition (SVD) to solve the problem of under-decomposition or over-decomposition caused by unreasonable choice of decomposition layer, it is more accurate than detrended fluctuation analysis (DFA) and empirical mode decomposition (EMD). Finally, the strongly correlated modes and weakly correlated modes are judged by calculating the Mahalanobis distance between the band-limited intrinsic mode functions (BLIMFs) and the original signal, which is more robust than the correlation judgment methods such as computing cross-correlation, Euclidean distance, Bhattachryya distance and Hausdorff distance. After the weak correlation modes are eliminated, the signal is reconstructed locally, and the separation of the micro-motion signal is realized. The experimental results show that the proposed method can filter out the strong clutter component and the fuselage component from radar echo more effectively than the local mean decomposition (LMD), empirical mode decomposition and moving target indicator (MTI) filter.


Author(s):  
Yuxi Li ◽  
Cunqian Feng ◽  
Xuguang Xu ◽  
Lixun Han ◽  
Dayan Wang

2019 ◽  
Vol 7 (4) ◽  
pp. 325-344 ◽  
Author(s):  
Mark Kotwicz Herniczek ◽  
Dustin Jee ◽  
Brian Sanders ◽  
Daniel Feszty

Rotor blade optimization with blade airfoil Reynolds numbers between 100 000 and 500 000 — characteristic of small single-rotor unmanned aerial vehicles (UAV) — was performed for hover using blade element momentum theory (BEMT) and demonstrated via flight tests. BEMT was used to test various airfoil profiles and rotor blade shapes using airfoil data from 2D computational fluid dynamics simulations with Reynolds numbers representative of the blade elements. Selected blade designs were manufactured and flight tested on a Blade 600X single main-rotor UAV (671 mm blade radius) to validate the theoretical results. The parameters considered during the optimization process were the rotor frequency, radius, taper ratio, twist, chord length, airfoil profile, and blade number. The best of the improved blade designs increased the figure of merit, a measure of rotor efficiency, from 0.31 to 0.68 and reduced power consumption by 54%. Reducing the rotational frequency accounted for 45% of the improvement in power consumption, while the taper ratio and blade number accounted for 25% and 17%, respectively. The blade twist and airfoil profile only had a minor effect on the power consumption, contributing 7% and 6% to the improvement. The rotor diameter and root chord were kept identical to the original rotor and hence had no contribution. The presented results could serve as useful guidelines to single-rotor UAV manufacturers and operators for increasing endurance and payload capabilities.


1966 ◽  
Vol 24 ◽  
pp. 21-23
Author(s):  
Y. Fujita

We have investigated the spectrograms (dispersion: 8Å/mm) in the photographic infrared region fromλ7500 toλ9000 of some carbon stars obtained by the coudé spectrograph of the 74-inch reflector attached to the Okayama Astrophysical Observatory. The names of the stars investigated are listed in Table 1.


Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


Author(s):  
Irving Dardick

With the extensive industrial use of asbestos in this century and the long latent period (20-50 years) between exposure and tumor presentation, the incidence of malignant mesothelioma is now increasing. Thus, surgical pathologists are more frequently faced with the dilemma of differentiating mesothelioma from metastatic adenocarcinoma and spindle-cell sarcoma involving serosal surfaces. Electron microscopy is amodality useful in clarifying this problem.In utilizing ultrastructural features in the diagnosis of mesothelioma, it is essential to appreciate that the classification of this tumor reflects a variety of morphologic forms of differing biologic behavior (Table 1). Furthermore, with the variable histology and degree of differentiation in mesotheliomas it might be expected that the ultrastructure of such tumors also reflects a range of cytological features. Such is the case.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Sign in / Sign up

Export Citation Format

Share Document