ACTA IMEKO ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 51 ◽  
Author(s):  
Nieves Medina ◽  
Jesús De Vicente ◽  
Jorge Robles

This paper describes the magnetic effects studied at CEM in their realization of a primary standard for dynamic force calibration using sinusoidal excitations of force transducers, although they can also affect any sensor with an electrical output mounted on an electrodynamic shaker. In this study the electromagnetic behaviour for the interaction between sensor and shaker or a similar source of magnetic fields is explained and a solution to minimise this interaction is also included.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 118
Author(s):  
M. Kobusch ◽  
L. Klaus

This paper presents experimental investigations of in-situ dynamic force calibrations in which an impact hammer provides the dynamic reference force. Here, the force transducer to be calibrated remains in the original mechanical structure of the force measurement application to which calibration shock forces are applied in a suitable way. Numerous experiments with different force transducer set-ups and different impact hammer configurations were conducted to validate this in- situ calibration method. The paper describes the analysis of the measurement data and presents the force transfer functions obtained. Finally, these dynamic calibration results are discussed.


Author(s):  
Nicholas Vlajic ◽  
Ako Chijioke

National Measurement Institutions have developed apparatuses that rely on impacting bodies to realize time-varying forces for dynamic calibration of force transducers. Within this manuscript, we present a reduced-order model to investigate the effects of structural and contact parameters on determining the frequency-dependent calibration function of the force transducer that is to be calibrated. The reduced-order model is validated with experimental measurements and is used to conduct parametric studies, wherein regions of single impact events and contact time are mapped out in parameter space. Although this study has been conducted with dynamic force calibrations in mind, the results presented here are of broader relevance to modal analysis and system identification.


Sensor Review ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Yongxing Guo ◽  
Dongsheng Zhang ◽  
Zude Zhou ◽  
Fangdong Zhu ◽  
Li Xiong

Purpose – This paper aims to present an effective sensing detection system based on fiber Bragg grating (FBG) sensing technology for protective barriers that have been effectively applied to intercept and stop rocks from falling onto railway tracks. . Determination of exact stress and deformation values during impact tests for key components of the protective barrier forms important criteria for quality control of these barriers. Monitoring changes in force along the protective barrier when deployed in field application allows for real-time disaster warning for collapse and falling rocks. Design/methodology/approach – In this paper, we propose a monitoring strategy for key components of a protective barrier. During performance tests, dynamic force and strain were measured for the steel strands and supporting I-beam, respectively. Design of a special elastic structure for the force transducer based on finite element analysis and tensile tests has been discussed here. Two types of FBG force transducers were manufactured based on the elastic structure. Four FBG force transducers and four FBG strain sensors were used for impact verification testing of a new rigid protective barrier with a design protection level of 25 KJ. Findings – Dynamic force and strain responses were obtained during an impact of free-falling block with a kinetic energy of 25 KJ. Originality/value – The FBG monitoring scheme can be extremely valuable for optimized design of the barrier and can provide real-time disaster warning in regions of collapse and falling rocks.


2013 ◽  
Vol 24 ◽  
pp. 1360031
Author(s):  
CHUNG-LIN WU ◽  
CHING-FEN TUAN

This paper presents an approach for calibrating the force transducer on the nano universal testing machine using milligram weights. Previous research on force calibration of such a system focused on the range from 10 mN to 200 mN, ignoring forces below 10 mN. The main purpose of this study is to analyze and calculate the uncertainty of force measurements within the range from 0.2 mN to 10 mN. The ABA calibration method in accordance with OIML R111-1 is adopted to determine the uncertainty in force measurement. The results indicate that the maximum relative uncertainty of force measurement is 7.0 × 10−3 with a 95% confidence level. The investigation can be used as the basis for evaluating measurement uncertainty of the system in small force range.


2006 ◽  
Vol 326-328 ◽  
pp. 1-4
Author(s):  
Kyung Suk Kim

Two different types of experimental methods have beeen developed for measuring lateral interaction forces between two solid surfaces for nano- and micro-meter scale contacts. One is the type of direct measurement methods which typically utilize AFM instrumentations. In the direct lateral force measurements some size-scale effects are commonly observed due to the effects of adhesion and surface roughness. A recent development of a fine AFM lateral force calibration method, a diamagnetic lateral force calibrator, has made it possible to study such size-scale effects systematically. The other type is the field projection method which requires a high resolution measurement of a deformation field near the edge of a contact. For such measurements a comprehensive map of deformation measurement techniques is introduced in a domain of spatial and strain resolutions. This technique provides a way of assessing the non-uniform distribution of the surface interaction forces for nano and micro-meter scale contacts.


2021 ◽  
Vol 18 ◽  
pp. 100233
Author(s):  
Zhenyu Wang ◽  
Xiang Ren ◽  
Haiying Feng ◽  
Dejun Luo

Sign in / Sign up

Export Citation Format

Share Document