Non-linear Volterra Model Identification of Industrial Glue-application System

Author(s):  
Pavol Mikulik ◽  
Linus Michaeli ◽  
Jan Saliga
2017 ◽  
Vol 121 (1238) ◽  
pp. 553-575 ◽  
Author(s):  
T. Sakthivel ◽  
C. Venkatesan

ABSTRACTThe aim of the present study is to develop a relatively simple flight dynamic model which should have the ability to analyse trim, stability and response characteristics of a rotorcraft under various manoeuvring conditions. This study further addresses the influence of numerical aspects of perturbation step size in linearised model identification and integration timestep on non-linear model response. In addition, the effects of inflow models on the non-linear response are analysed. A new updated Drees inflow model is proposed in this study and the applicability of this model in rotorcraft flight dynamics is studied. It is noted that the updated Drees inflow model predicts the control response characteristics fairly close to control response characteristics obtained using dynamic inflow for a wide range of flight conditions such as hover, forward flight and recovery from steady level turn. A comparison is shown between flight test data, the control response obtained from the simple flight dynamic model, and the response obtained using a more detailed aeroelastic and flight dynamic model.


2013 ◽  
Vol 15 (3) ◽  
pp. 1022-1041 ◽  
Author(s):  
R. Maheswaran ◽  
Rakesh Khosa

In this study, a multi-scale non-linear model based on coupling a discrete wavelet transform (DWT) and the second-order Volterra model, i.e. the wavelet Volterra coupled (WVC) model, is applied for daily inflow forecasting at Krishna Agraharam, Krishna River, India. The relative performance of the WVC model was compared with regular artificial neural networks (ANN), wavelet-artificial neural networks (WA-ANN) models and other baseline models such as auto-regressive moving average with exogenous variables (ARMAX) for lead times of 1–5 days. The models were applied for the forecasting of daily streamflow at Krishna Agraharam Station at Krishna River. The WVC performed very well, especially when compared with the WA-ANN model for lead times of 4 and 5 days. The results indicate that the WVC model is a promising alternative to the other traditional models for short-term flow forecasting.


2017 ◽  
Vol 31 (9) ◽  
pp. 2159-2181 ◽  
Author(s):  
Anchit Lakhanpal ◽  
Vinit Sehgal ◽  
R. Maheswaran ◽  
R. Khosa ◽  
Venkataramana Sridhar

Sign in / Sign up

Export Citation Format

Share Document