Design of High Gain Koch-Curve Fractal Antenna for Wireless Applications

Author(s):  
Subhasish Pandav ◽  
Gautam Sadhukhan ◽  
Tanmaya Kumar Das ◽  
Santanu Kumar Behera ◽  
Madhusmita Mohanty
Author(s):  
Shweta Rani ◽  
Sushil Kakkar

This paper focuses on the design and development of modified Koch fractal antenna. Compared to traditional Koch curve antenna, the presented antenna possesses a greater number of frequency bands and better impedance matching. Furthermore, the bacterial foraging optimization (BFO) approach is implemented to enhance the impedance bandwidth. The developed technique has been verified by employing various numerical simulations. The design parameters generated from the optimization procedure have been utilized to manufacture the antenna and the respective experimental and simulated results compared. The measured results show that the designed antenna exhibits multi and wideband behavior, covering WLAN, WIMAX, and various other wireless applications.


2019 ◽  
Vol 8 (4) ◽  
pp. 3257-3263

Antennas play a vital role in wireless communication; a thirst of excellence in this area is unending. Proposed work describes a concept of fractal multiband antenna designed in the hexagon shape. Basically fractal is the concept used in Microstrip antenna for giving better results than conventional Microstrip antenna. By using hexagonal fractal antenna we can possibly achieve the radiation pattern with high gain. The coaxial feeding is used and multiple hexagons are interconnected in array for maintaining conductivity and to preserve electrical self similarity. Hexagonal antenna is used for different wireless applications. The proposed antenna frequency band covers a large number of wireless communication applications including GPS (1.6GHz), Bluetooth (2.4 GHz) & WLAN (3.6GHz). Antenna design has been designed and simulated by using the software Ansoft’s HFSS and parameters like bandwidth return loss, directivity, VSWR are analyzed. Fabrication of the antenna is done by using wet-etching method, on FR-4 dielectric substrate material. Experimental results are taken on Vector Network Analyzer (VNA) and those obtained results were compared with simulated results. The hexagonal fractal antenna array is found to possess predictable multiband characteristics.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


2018 ◽  
Vol 74 ◽  
pp. 125-130 ◽  
Author(s):  
Arpan Desai ◽  
Trushit K. Upadhyaya ◽  
Rikikumar Hasmukhbhai Patel ◽  
Sagar Bhatt ◽  
Parthesh Mankodi

Author(s):  
Sanjeev Yadav ◽  
Ruchika Choudhary ◽  
Umesh Soni ◽  
Bhavana Peswani ◽  
Mahendra Mohan Sharma

MAPAN ◽  
2021 ◽  
Author(s):  
Aman Dahiya ◽  
Rohit Anand ◽  
Nidhi Sindhwani ◽  
Dhirendra Kumar
Keyword(s):  
X Band ◽  
Ku Band ◽  

Sign in / Sign up

Export Citation Format

Share Document