Application of H∞ controller to Boost converter using Model Order Reduction

Author(s):  
Nivedita Pati ◽  
Nibedita Swain
Author(s):  
Nivedita Pati ◽  
Babita Panda

Abstract This paper presents the modeling and control of a non-minimum phase dc-dc boost converter based on the three - state switching cells. In any double stage grid-connected system the converter forms an interface between the photovoltaic source and the inverter. As the control and regulation of the converter output is a vital part of penetration of renewable to grid, therefore, this paper had attempted the control of a converter topology that can reduce the current stress across its switches. But the system becomes highly unstable and complex which has been validated by predicting the limit cycle with a describing function. The Controller design is implemented after reducing the complexity of the system using the Model order reduction principle. H-inf controller being robust in nature is applied for stable and regulated output.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document