An integrated gravimetric system to measure absolute gravity aboard a moving base

Author(s):  
A. Sokolov ◽  
A. Krasnov
2012 ◽  
Vol 47 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Marek Kaczorowski ◽  
Tomasz Olszak ◽  
Janusz Walo ◽  
Marcin Barlik

ABSTRACT In 2006 a gravimetric pavilion was installed inside the Geodynamic Laboratory (LG) in Książ. The pavilion was equipped with two pillars intended to serve relative and absolute gravimetric measurements. Installation of measurement platform for absolute gravity measurements inside gravimetric pavilion of LG made it possible to perform four sessions of absolute gravity measurements: two of them in 2007 (June 10-12 and Nov. 21-22), one in 2008 (Apr. 21-22) and one in 2011 (June 19-21). In 2007 the absolute measurements were performed using two FG5 ballistic gravimeters. In April 2007 the measurements were performed by Dr Makinen from Geodetic Institute of Finnish Academy of Science with application of FG5 No. 221 absolute gravimeter. In June 2007 and in the years 2008 and 2011 such gravimetric measurements were performed by the team from Department of Geodesy and Astronomical Geodesy of Warsaw University of Technology using FG5 No. 230 absolute gravimeter. Elaboration of observation sessions from both gravimeters was performed in the Department of Higher Geodesy following the procedures used in constituting of uniform gravimetric system of geodynamic polygons reference. This constituting of gravimetric system comprised inter alia application of identical models of lithospheric tides (global model by Wenzel, 1997) and ocean tides (Schwiderski, 1980) (reduction of absolute measurements with tidal signals). Observations performed during summer of 2007, autumn of 2007, and spring of 2008 and 2011 indicated existence of small changes of absolute gravity of the order of 1 Gal. Maxima of accelerations appear in the spring period, and minima in the autumn period. This effect is connected with the influence of global hydrological factors the annual amplitude of which is ca 1,5 Gal and achieve extreme values in the spring-autumn interval. Very small value of observed amplitude of gravity changes in the period of extreme variability suggests that the observed gravity changes in LG are caused only by global phenomenon. This proves high degree of „independence” of gravimetric measurement base in LG from the local environmental factors such as ground water level variations, ground humidity, impact of snow cover, etc. At this moment the instrumental environment of absolute measurements obtains particular value, especially in the case of the tiltmeters and relative the gravimeter Lacoste& Romberg (LR-648). The relative gravity measurements as performed simultaneously with absolute gravity measurements enable us to determine the local tidal ephemeredes which makes it possible to replace the global tidal modal with ocean tidal model with the more realistic, locally determined tidal parameters (the local tidal ephemeredes).


Tehnika ◽  
2021 ◽  
Vol 76 (1) ◽  
pp. 17-24
Author(s):  
Sofija Naod

The gravity is used to solve geodesy's primary tasks, such as determining geoid and defining the height and gravimetric reference networks of different scales, from national to global. Knowledge of gravity is of great importance for both metrology and geodetic metrology. In addition to the historical overview of absolute gravimeters, this paper presents the theoretical basis of the most commonly used method for determining the absolute value of gravity. The principle of operation of the absolute gravimeter FG5 and the importance of international comparison of absolute gravimeters are briefly presented. An overview of the gravimetric reference systems is given, emphasizing the establishment of the International Reference Gravimetric System. The previous works concerning the absolute determination of acceleration due to Earth's gravity field in Serbia are presented. Finally, the importance of determining the absolute value of gravity from the geodetic and metrological perspective is pointed out. Both national and international significance of determining absolute gravity in defining gravimetric reference systems and the importance of absolute gravity in monitoring global phenomena are emphasized.


1975 ◽  
Author(s):  
Mark Kirkpatrick ◽  
Nicholas Shields ◽  
Ronald Brye ◽  
Frank L. Vinz
Keyword(s):  

2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2021 ◽  
pp. 112694
Author(s):  
Zhengxiang Fang ◽  
Yonggang Yin ◽  
Chen Chen ◽  
Shujuan Zhang ◽  
Yunfeng Liu ◽  
...  

Author(s):  
Shantanu Thakar ◽  
Pradeep Rajendran ◽  
Ariyan M. Kabir ◽  
Satyandra K. Gupta
Keyword(s):  

2012 ◽  
Vol 433-440 ◽  
pp. 2802-2807
Author(s):  
Ying Hong Han ◽  
Wan Chun Chen

For inertial navigation systems (INS) on moving base, transfer alignment is widely applied to initialize it. Three velocity plus attitude matching methods are compared. And Kalman filter is employed to evaluate the misalignment angle. Simulations under the same conditions show which scheme has excellent performance in precision and rapidness of estimations.


2021 ◽  
Vol 95 (12) ◽  
Author(s):  
Tõnis Oja ◽  
Jaakko Mäkinen ◽  
Mirjam Bilker-Koivula ◽  
Ludger Timmen
Keyword(s):  

Author(s):  
Zhixiang Xu ◽  
Hideyuki Tamura

Abstract In this paper, a single-degree-of-freedom magnetic levitation dynamic system, whose spring is composed of a magnetic repulsive force, is numerically analyzed. The numerical results indicate that a body levitated by magnetic force shows many kinds of vibrations upon adjusting the system parameters (viz., damping, excitation amplitude and excitation frequency) when the system is excited by the harmonically moving base. For a suitable combination of parameters, an aperiodic vibration occurs after a sequence of period-doubling bifurcations. Typical aperiodic vibrations that occurred after period-doubling bifurcations from several initial states are identified as chaotic vibration and classified into two groups by examining their power spectra, Poincare maps, fractal dimension analyses, etc.


Sign in / Sign up

Export Citation Format

Share Document