Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller

Author(s):  
Mehmet Korkmaz ◽  
Omer Aydogdu ◽  
Huseyin Dogan
2011 ◽  
Vol 127 ◽  
pp. 360-367 ◽  
Author(s):  
Xiao Dong Kang ◽  
Gang Huang ◽  
Xian Li Cao ◽  
Xiang Zhou

This paper takes the five –link concrete pump boom as the research object, and transforms its trajectory planning issue into a multi-object optimization problem. Using intelligent hill climbing algorithm and genetic algorithm, and integrating them closely to ensure real-time online planning for the pump truck effectively, and make the planned motion trajectory for the boom is global optimized under particular constrained conditions. Simulation and performance comparison experiments show that this hybrid algorithm is practical and effective, which offers a new approach for the trajectory planning problem of concrete pump truck.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5760
Author(s):  
Eduardo Campos-Mercado ◽  
Edwin Fernando Mendoza-Santos ◽  
Jorge Antonio Torres-Muñoz ◽  
Edwin Román-Hernández ◽  
Víctor Iván Moreno-Oliva ◽  
...  

In this paper, we present a nonlinear PID controller based on saturation functions with variable parameters in order to regulate the output voltage of a buck converter in the presence of changes in the input voltage. The main feature of the proposed controller is to bound the control input with a variable parameter to avoid the windup effect generated by the combination of the integral control action and some operation conditions. The main advantages of the proposed nonlinear PID controller are its low computing cost and the simple tuning task to implement the control strategy in an embedded system. The acceptable behavior of the closed-loop system is presented through the simulation and experimental results.


2011 ◽  
Vol 383-390 ◽  
pp. 743-749
Author(s):  
Jiu Qing Liu ◽  
Wei Wang

Based on the fusion of immune feedback mechanism for the conventional PID control technique, a new immune nonlinear PID controller is proposed in this paper. The stability of immune nonlinear PID is analysised using Popov stability criterion. The controller designed not only guarantees the stability robustness and performance robustness of the system but also the tracking performance of the system. The numerical simulation results of the Material-level control of the heat milling system show the effectiveness and feasibility of our immune unlinear PID are verified in Mat lab.


2014 ◽  
Vol 614 ◽  
pp. 215-218 ◽  
Author(s):  
Lei Yu ◽  
Xu Long Zhang ◽  
Feng Wang

In order to improve the problem of premature and performance of optimization, an improved adaptive genetic algorithm is proposed for parameters optimization of coal mine belt conveyor PID controller by applying the number of iterations to the crossover operation and mutation operation of genetic algorithm. The simulation shows that the step response of the improved algorithm is superior to the traditional adaptive genetic algorithm.


2014 ◽  
Vol 709 ◽  
pp. 252-255 ◽  
Author(s):  
Xin Zhao ◽  
Wei Ping Zhao ◽  
Song Xiang

This paper performed the longitudinal nonlinear PID Controller parameter optimization of general aircraft autopilot based on the longitudinal channel model and genetic algorithm. Proportion, integration and differential gain of nonlinear PID Controller is nonlinear function of controlling error. The objection function involves time integration of error’s absolute value, output of controller and system overshoot. The longitudinal controlling rate optimization of general aircraft autopilot is realized by minimizing the objection function value. Simulation results show that controller designed by the present method is better than traditional PID controller.


Sign in / Sign up

Export Citation Format

Share Document