Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surfaces Control technique

Author(s):  
Nadeem Qaiser ◽  
Naeem Iqbal ◽  
Naeem Qaiser
Author(s):  
Siddharth Sridhar ◽  
Rumit Kumar ◽  
Kelly Cohen ◽  
Manish Kumar

Tilt-rotor quadcopters are a novel class of quadcopters with a servo motor attached on each arm that assist the quadcopter’s rotors to tilt to a desired angle thereby enabling thrust vectoring. Using these additional tilt angles, this type of a quadcopter can be used to achieve desired trajectories with faster maneuvering and can handle external disturbances better than a conventional quadcopter. In this paper, a non-linear controller has been designed using sliding mode technique for the pitch, roll, yaw motions and the servo motor tilt angles of the quadcopter. The dynamic model of the tilt-rotor quadcopter is presented, based on which sliding surfaces were designed to minimize the tracking errors. Using the control inputs derived from these sliding surfaces, the state variables converge to their desired values in finite-time. Further, the non-linear sliding surface coefficients are obtained by stability analysis. The robustness of this proposed sliding mode control technique is shown when a faulty motor scenario is introduced. The quadcopter transforms into a T-copter design upon motor failure thereby abetting the UAV to cope up with the instabilities experienced in yaw, pitch and roll axes and still completing the flight mission. The dynamics of the T-copter design and the derivation of the switching surface coefficients for this reconfigurable system are also presented.


Author(s):  
Siddharth Sridhar ◽  
Rumit Kumar ◽  
Mohammadreza Radmanesh ◽  
Manish Kumar

A non-linear control of a tilt-rotor quadcopter using sliding mode technique is presented in this paper. The tilt-rotor quadcopters are a novel class of quadcopters with a servo motor installed on each arm that enables the quadcopter’s rotors to tilt to a particular angle. Using these additional tilt angles, this type of a quadcopter can be used to achieve desired trajectories with faster maneuvering and can handle external disturbances better than a conventional quadcopter. In this paper, sliding mode control technique is utilized for the pitch, roll and yaw motions for the quadcopter while an independent PD controller provides the tilt angles to the servo motors. The dynamic model of the tilt-rotor quadcopter is presented, based on which sliding surfaces were designed to minimize the tracking errors. Using the control inputs derived from these sliding surfaces, the state variables converge to their desired values in finite-time. Further, the non-linear sliding surface coefficients are obtained by stability analysis. Numerical simulation results demonstrate the performance and robustness against disturbances of this proposed sliding mode control technique.


2011 ◽  
Vol 131 (7) ◽  
pp. 536-541 ◽  
Author(s):  
Tarek Hassan Mohamed ◽  
Abdel-Moamen Mohammed Abdel-Rahim ◽  
Ahmed Abd-Eltawwab Hassan ◽  
Takashi Hiyama

2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


2014 ◽  
Vol E97.B (12) ◽  
pp. 2698-2705
Author(s):  
Tomoyuki HINO ◽  
Hitoshi TAKESHITA ◽  
Kiyo ISHII ◽  
Junya KURUMIDA ◽  
Shu NAMIKI ◽  
...  

2013 ◽  
Vol 60 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Paweł Sulikowski ◽  
Ryszard Maronski

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.


2015 ◽  
Vol 5 (2) ◽  
pp. 21-26
Author(s):  
K. Prathibha ◽  
◽  
M. Vasudeva Reddy ◽  
Keyword(s):  

1988 ◽  
Author(s):  
R. D. Irwin ◽  
Victoria Jones ◽  
Sally C. Rice ◽  
Sherman M. Seltzer ◽  
Danny K. Tollison

Author(s):  
Sonal Singh ◽  
Shubhi Purwar

Background and Introduction: The proposed control law is designed to provide fast reference tracking with minimal overshoot and to minimize the effect of unknown nonlinearities and external disturbances. Methods: In this work, an enhanced composite nonlinear feedback technique using adaptive control is developed for a nonlinear delayed system subjected to input saturation and exogenous disturbances. It ensures that the plant response is not affected by adverse effect of actuator saturation, unknown time delay and unknown nonlinearities/ disturbances. The analysis of stability is done by Lyapunov-Krasovskii functional that guarantees asymptotical stability. Results: The proposed control law is validated by its implementation on exothermic chemical reactor. MATLAB figures are provided to compare the results. Conclusion: The simulation results of the proposed controller are compared with the conventional composite nonlinear feedback control which illustrates the efficiency of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document