Non-Linear Sliding Mode Control of a Tilting-Rotor Quadcopter

Author(s):  
Siddharth Sridhar ◽  
Rumit Kumar ◽  
Mohammadreza Radmanesh ◽  
Manish Kumar

A non-linear control of a tilt-rotor quadcopter using sliding mode technique is presented in this paper. The tilt-rotor quadcopters are a novel class of quadcopters with a servo motor installed on each arm that enables the quadcopter’s rotors to tilt to a particular angle. Using these additional tilt angles, this type of a quadcopter can be used to achieve desired trajectories with faster maneuvering and can handle external disturbances better than a conventional quadcopter. In this paper, sliding mode control technique is utilized for the pitch, roll and yaw motions for the quadcopter while an independent PD controller provides the tilt angles to the servo motors. The dynamic model of the tilt-rotor quadcopter is presented, based on which sliding surfaces were designed to minimize the tracking errors. Using the control inputs derived from these sliding surfaces, the state variables converge to their desired values in finite-time. Further, the non-linear sliding surface coefficients are obtained by stability analysis. Numerical simulation results demonstrate the performance and robustness against disturbances of this proposed sliding mode control technique.

Author(s):  
Siddharth Sridhar ◽  
Rumit Kumar ◽  
Kelly Cohen ◽  
Manish Kumar

Tilt-rotor quadcopters are a novel class of quadcopters with a servo motor attached on each arm that assist the quadcopter’s rotors to tilt to a desired angle thereby enabling thrust vectoring. Using these additional tilt angles, this type of a quadcopter can be used to achieve desired trajectories with faster maneuvering and can handle external disturbances better than a conventional quadcopter. In this paper, a non-linear controller has been designed using sliding mode technique for the pitch, roll, yaw motions and the servo motor tilt angles of the quadcopter. The dynamic model of the tilt-rotor quadcopter is presented, based on which sliding surfaces were designed to minimize the tracking errors. Using the control inputs derived from these sliding surfaces, the state variables converge to their desired values in finite-time. Further, the non-linear sliding surface coefficients are obtained by stability analysis. The robustness of this proposed sliding mode control technique is shown when a faulty motor scenario is introduced. The quadcopter transforms into a T-copter design upon motor failure thereby abetting the UAV to cope up with the instabilities experienced in yaw, pitch and roll axes and still completing the flight mission. The dynamics of the T-copter design and the derivation of the switching surface coefficients for this reconfigurable system are also presented.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Wonhee Kim ◽  
Chang Mook Kang ◽  
Young Seop Son ◽  
Chung Choo Chung

A nonlinear backstepping control is proposed for the coupled normal form of nonlinear systems. The proposed method is designed by combining the sliding-mode control and backstepping control with a disturbance observer (DOB). The key idea behind the proposed method is that the linear terms of state variables of the second subsystem are lumped into the virtual input in the first subsystem. A DOB is developed to estimate the external disturbances. Auxiliary state variables are used to avoid amplification of the measurement noise in the DOB. For output tracking and unmatched disturbance cancellation in the first subsystem, the desired virtual input is derived via the backstepping procedure. The actual input in the second subsystem is developed to guarantee the convergence of the virtual input to the desired virtual input by using a sliding-mode control. The stability of the closed-loop is verified by using the input-to-state stable (ISS) property. The performance of the proposed method is validated via numerical simulations and an application to a vehicle system based on CarSim platform.


2016 ◽  
Vol 23 (18) ◽  
pp. 2912-2925 ◽  
Author(s):  
Saleh Mobayen ◽  
Dumitru Baleanu ◽  
Fairouz Tchier

In this paper, an linear matrix inequalities (LMI)-based second-order fast terminal sliding mode control technique is investigated for the tracking problem of a class of non-linear uncertain systems with matched and mismatched uncertainties. Using the offered approach, a robust chattering-free control scheme is presented to prove the presence of the switching around the sliding surface in the finite time. Based on the Lyapunov stability theorem, the LMI conditions are presented to make the state errors into predictable bounds and the parameters of the controller are obtained in the form of LMI. The control structure is independent of the order of the model. Then, the proposed method is fairly simple and there is no difficulty in the use of this scheme. Simulations on the well-known Genesio's chaotic system and Chua's circuit system are employed to emphasize the success of the suggested scheme. The simulation results on the Genesio's system demonstrate that the offered technique leads to the superior improvement on the control effort and tracking performance.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yanghua Gao ◽  
Hailiang Lu

In this paper, a robust observer-based sliding mode control algorithm is proposed to address the modelling and measurement inaccuracies, load variations, and external disturbances of flexible articulated manipulators. Firstly, a sliding mode observer was designed with exponential convergence to observe system state accurately and to overcome the measuring difficulty of the state variables, unmeasurable quantities, and external disturbances. Next, a robust sliding mode controller was developed based on the observer, such that the output error of the system converges to zero in finite time. In this way, the whole system achieves asymptotic stability. Finally, the convergence conditions of the observer were theoretically analyzed to verify the convergence of the proposed algorithm, and simulation was carried out to confirm the effectiveness of the proposed method.


2017 ◽  
Vol 11 (8) ◽  
pp. 1088-1097 ◽  
Author(s):  
Xinxin Liu ◽  
Xiaojie Su ◽  
Yong-Duan Song ◽  
Rongni Yang ◽  
Lei Wang

2021 ◽  
Vol 01 (03) ◽  
Author(s):  
Abid Raza ◽  
Fahad Mumtaz Malik ◽  
Rameez Khan ◽  
Naveed Mazhar ◽  
Hameed Ullah ◽  
...  

A nonlinear control technique for autonomous control of a tri-rotor unmanned aerial vehicle is presented in this paper. First, a comprehensive mathematical model is developed using the Newton–Euler approach for a tri-rotor, which is found to be highly nonlinear and coupled. Then, the equivalent input affine model is extracted by applying a suitable transformation. Finally, the sliding mode control for trajectory tracking is chosen which is immune to matched external disturbances, parametric uncertainties, and modeling errors. The proposed controller performance has been verified for appropriate inputs under wind disturbances using MATLAB, and the simulation results are presented.


2019 ◽  
Vol 9 (6) ◽  
pp. 1124
Author(s):  
Yu Quan ◽  
Lijun Hang ◽  
Yuanbin He ◽  
Yao Zhang

In general, the integral sliding mode control (ISMC) with an integral sliding surface would lead to tracking errors under unbalanced and harmonic grid voltage conditions. In order to eliminate tracking errors under these conditions, multi-resonant items are added to the conventional integral sliding surface in the proposed strategy, which can be called multi-resonant-based sliding mode control (MRSMC). A comparison of tracking precision on the ISMC and MRSMC is analyzed. In order to regulate the system powers directly, the errors of instantaneous active and reactive powers are selected as the state variables. Finally, the output current harmonics and a majority of the doubly-fed induction generator’s (DFIG) electromagnetic torque pulsations can be removed under unbalanced and harmonic grid voltage conditions. Simulation and experimental results are presented to verify the correctness and effectiveness of the proposed strategy.


2017 ◽  
Vol 122 (1247) ◽  
pp. 148-171
Author(s):  
M. Reza Alipour ◽  
F. Fani Saberi ◽  
M. Kabganian

ABSTRACTIn this paper, a non-linear tracking control algorithm is extended. The control objective of this research is to track a desired time-varying attitude of a satellite in the presence of inertia uncertainties and external disturbances, in order to be more suitable for implementation in a real-world application. In this investigation, the actuators are reaction wheels and the actuator dynamics are modelled in addition to the spacecraft dynamics. Thus, the control signal is DC motor voltage which is the most fundamental control variable and can be generated easily by a motor driver in practical cases. To achieve robust tracking of the desired time-varying attitude, a sliding mode controller is designed, and adaptive techniques are developed based on sliding mode control to overcome the inertia uncertainties and to estimate and compensate external disturbances. The kinematic equations of the satellite are expressed using quaternion parameters, and a novel control law will be derived by using a new facilitating approach in controller design, which is based on quaternion algebra, because of quaternion advantages, such as singularity rejection. Using this approach it will be more comfortable to deal with tedious mathematical operations, and on contrary with most of the previous studies, the terms corresponding to derivatives of the desired attitude are not neglected, and tracking capability is retained. The global stability of both methods (Sliding Mode Control (SMC) and adaptive sliding) is investigated using Lyapunov’s stability theorem. In order to validate the control methods, first, Simulink-ADAMS co-simulation of a 3-DOF attitude control is used to verify the algorithm performance and integrity, and finally, the control strategy is implemented on the Amirkabir University of Technology (AUT) 3-DOF attitude simulator for different types of non-linear attitudes. Both co-simulation and implementation results clearly illustrate the designed attitude control algorithm’s excellent performance in the various manoeuvres.


Sign in / Sign up

Export Citation Format

Share Document