Adverse weather avoidance considering flight level changes

Author(s):  
Babatope S. Ayo ◽  
Yim Fun Hu ◽  
Jian-ping Li
Keyword(s):  
2016 ◽  
Vol 6 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Isaac Munene

Abstract. The Human Factors Analysis and Classification System (HFACS) methodology was applied to accident reports from three African countries: Kenya, Nigeria, and South Africa. In all, 55 of 72 finalized reports for accidents occurring between 2000 and 2014 were analyzed. In most of the accidents, one or more human factors contributed to the accident. Skill-based errors (56.4%), the physical environment (36.4%), and violations (20%) were the most common causal factors in the accidents. Decision errors comprised 18.2%, while perceptual errors and crew resource management accounted for 10.9%. The results were consistent with previous industry observations: Over 70% of aviation accidents have human factor causes. Adverse weather was seen to be a common secondary casual factor. Changes in flight training and risk management methods may alleviate the high number of accidents in Africa.


Author(s):  
Andrey ilinsky ◽  
Alexander Nefedov ◽  
Konstantin Evsenkin

Global climatic changes, technogenic pollution by pollutants, violations of technologies of exploitation of reclaimed land lead to a decrease in fertility and soil degradation of agricultural land. Adverse weather conditions, resulting in a lack of adequate flood water, and economic difficulties in agriculture make it difficult to fill the deficit of organic matter and macronutrients in reclaimed alluvial soils. The monitoring of agrochemical properties of alluvial meadow medium-loamy soil of the stationary site (reclaimed lands of JSC «Moskovskoye» of Ryazan region), located in the floodplain of the Oka river, conducted by the Meshchersky branch of Vniigim, showed the presence and intensification of degradation changes in the soil. Thus, comparing the agrochemical indicators in the layer 0–20 cm, carried out in 1995, with the indicators of 2019, it should be noted a decrease in soil fertility. The decrease in soil quality was expressed in a decrease in the amount of mobile phosphorus by 37.6 %, mobile potassium by 53.3 %. Also, during this time there was a decrease in organic matter by 9.1 %, and an increase in soil acidity was 0.6 pH. As a result of such changes, soils lose ecological stability and become more vulnerable to adverse weather and negative anthropogenic impacts. In such a situation, advanced agricultural techniques should be actively used to obtain guaranteed, environmentally safe crop yields and restore the fertility of degraded reclaimed soils. In this regard, there is a need to develop innovative methods of fertility restoration of degraded alluvial soils in reclaimed lands using multi-component organic-mineral ameliorants. Meshchersky branch performs research work in addressing this issue.


2020 ◽  
pp. 160-168
Author(s):  
I. Senyk

Botanical composition of grasses is one of the most important indicators the biological value and quality of the obtained hay and pasture forage, the longevity of hayfi elds and pastures depend on. The issue of changing the botanical composition of agrophytocenoses is especially important in the context of global climate change, which in recent decades is also manifested in the territory of Ukraine, as it is possible to establish the most adapted species of legumes and cereals to adverse weather conditions and to identify eff ective technological methods of managing these processes for maximum conservation economically valuable species in the herbage. The purpose of the research is to establish the infl uence of diff erent ways of sowing of clover and alfalfa cereal crops agrophytocenoses on the formation of their botanical composition. Field studies have established diff erent eff ects of conventional in-line, cross-section and cross-sectional methods of sowing on the formation of botanical composition of grass mixtures of clover meadow (Trifolium pratense) varieties Sparta and Pavlyna with timothy meadow (Phleum pratense) and fenugreek multifl oral (Lolium multifl orum) and of agrophytocenoses of alfalfa of Sinyukha and Seraphima sowing varieties with reed fire (Festuca arundinacea Schreb) and middle wheatgrass (Elytrigia intermedia). For the average of four years of life of clover and alfalfa cereal crops agrophytocenoses, the highest proportion of legume component was observed with split-cross sowing – 51.6 % for Sparta, 53.1 % for Pavlyna, 60.3 % for Seraphima and 61.6 % for the Sinyukha variety. In the fourth year of life (the third year of use) of sowed leguminous-cereals agrophytocenoses, the preservation of the legume component was 14.6–15.5 % in clover-cereals grass mixtures with the Sparta variety and 16.0–16.8 % with the Pavlyna variety. In alfalfa grasslands, these indicators were 54.0–55.1 % with Seraphim and 55.0–56.2 % with Sinyukha. Among the studied varieties of clover meadow and alfalfa sowing proved better in the conditions of the Forest Steppe of western Pavlyna and Sinyukha. Cross-sectional and divided cross-sectional sowing of legumes and cereals mixtures proved to be better compared to conventional row crops in terms of conservation of economically valuable grass species. Key words: agrophytocenosis, botanical composition, clover meadow, alfalfa sowing, sowing methods.


Author(s):  
Nataliia Kharytonova ◽  
Olha Mykolaienko ◽  
Tetyana Lozova

Greening of roads contributes to the protection of roads and their elements from influence of adverse weather and climatic factors; it includes the measures for improvement and landscaping of roads, ensures the protection of roadside areas from transport pollution, provides visual orientation of drivers. The solution of these issues will ensure creation and maintenance of safe and comfortable conditions for travelers. Green plantings in the right-of-way road area include woody, bushy, flower and grass vegetation of natural and artificial origin. For proper operation of public roads and satisfaction of other needs of the industry, there may be the need in removing the greenery. The reason for the removal of greenery in the right-of-way road area may be due to the following factors: construction of the architectural object, widening of the motor road, repair works in the security zone of overhead power lines, water supply, drainage, heating, telecommunications facilities, cutting of hazardous, dry and fautal trees, as well as self-grown and brushwood trees with a root neck diameter not exceeding 5 cm, elimination of the consequences of natural disasters and emergencies. The removal of plantations in the right-of-way area is executed in order to ensure traffic safety conditions and to improve the quality of plantations composition and their protective properties. Nowadays, in Ukraine there is no clear procedure for issuing permits for removing of such plantations. In order to resolve this issue, there is a need in determining the list of regulations in the area of forest resources of Ukraine and, if needed, the list of regulatory acts that have to be improved; to prepare a draft of the regulatory legal act that would establish the procedure of plantations cutting, the methodology of their condition determination, recovery costs determination, the features of cutting. Keywords: plantations, cutting, right-of-way, woodcutting permit, order.


1993 ◽  
Author(s):  
DARRELL GILLETTE ◽  
MARK PAGE ◽  
JOHN HODGKINSONI

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Sign in / Sign up

Export Citation Format

Share Document