Detecting stony areas based on ground surface curvature distribution

Author(s):  
Paavo Nevalainen ◽  
Maarit Middleton ◽  
Ilkka Kaate ◽  
Tapio Pahikkala ◽  
Raimo Sutinen ◽  
...  
2015 ◽  
Vol 798 ◽  
pp. 589-595 ◽  
Author(s):  
Xiang Shen ◽  
Theodosios Korakianitis ◽  
Eldad Avital

The prescribed surface curvature distribution blade design (CIRCLE) method optimises aerofoils and blades by controlling curvature continuity and slope of curvature distribution along their surfaces. The symmetrical NACA0012 exhibits a surface curvature discontinuity at the leading edge point, and the non-symmetrical E387 exhibits slope-of-curvature discontinuities in the surface. The CIRCLE method is applied to both aerofoils to remove both surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analyses are used to investigate the curvature effects on aerodynamic performance of the original and modified aerofoils. These results are compared with experimental data obtained from tests on the original aerofoil geometry. The computed aerodynamic advantages of the modified aerofoil are analysed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects the aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 influences the size of the laminar separation bubble at lower Reynolds numbers, and it affects the inherent profile of the aerofoil at higher Reynolds numbers. It is concluded that the surface curvature distribution of aerofoils has a significant effect on aerofoil aerodynamic performance, which can be improved by redesigning the surface curvature distribution of the original aerofoil geometry.


Author(s):  
T. Korakianitis ◽  
M. A. Rezaienia ◽  
I. A. Hamakhan ◽  
E. Avital ◽  
J. J. R. Williams

The prescribed surface curvature distribution blade design (CIRCLE) method can be used for the design of two-dimensional (2D) and three-dimensional (3D) turbomachinery blade rows with continuous curvature and slope of curvature from leading edge (LE) stagnation point to trailing edge (TE) stagnation point and back to the LE stagnation point. This feature results in smooth surface pressure distribution airfoils with inherently good aerodynamic performance. In this paper the CIRCLE blade design method is modified for the design of 2D isolated airfoils. As an illustration of the capabilities of the method, it is applied to the redesign of two representative airfoils used in wind turbine blades: the Eppler 387 airfoil; and the NREL S814 airfoil. Computational fluid dynamic analysis is used to investigate the design point and off-design performance of the original and modified airfoils, and compare with experiments on the original ones. The computed aerodynamic advantages of the modified airfoils are discussed. The surface pressure distributions, drag coefficients, and lift-to-drag coefficients of the original and redesigned airfoils are examined. It is concluded that the method can be used for the design of wind turbine blade geometries of superior aerodynamic performance.


2011 ◽  
Vol 01 (02) ◽  
pp. 43-47 ◽  
Author(s):  
Guangxu Li ◽  
Hyoungseop Kim ◽  
Joo Kooi Tan ◽  
Seiji Ishikawa ◽  
Akiyoshi Yamamoto

Author(s):  
T. Korakianitis ◽  
M. A. Rezaienia ◽  
I. A. Hamakhan ◽  
E. J. Avital ◽  
J. J. R. Williams

The prescribed surface curvature distribution blade design (CIRCLE) method can be used for the design of two-dimensional (2D) and three-dimensional (3D) turbomachinery blade rows with continuous curvature and slope of curvature from leading edge (LE) stagnation point to trailing edge (TE) stagnation point and back to the LE stagnation point. This feature results in smooth surface pressure distribution airfoils with inherently good aerodynamic performance. In this paper the CIRCLE blade design method is modified for the design of 2D isolated airfoils. As an illustration of the capabilities of the method, it is applied to the redesign of two representative airfoils used in wind turbine blades: the Eppler 387 airfoil and the NREL S814 airfoil. Computational fluid dynamic analysis is used to investigate the design point and off-design performance of the original and modified airfoils, and compare with experiments on the original ones. The computed aerodynamic advantages of the modified airfoils are discussed. The surface pressure distributions, drag coefficients, and lift-to-drag coefficients of the original and redesigned airfoils are examined. It is concluded that the method can be used for the design of wind turbine blade geometries of superior aerodynamic performance.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
T. Korakianitis ◽  
M. A. Rezaienia ◽  
I. A. Hamakhan ◽  
A. P. S. Wheeler

The prescribed surface curvature distribution blade design (CIRCLE) method is presented for the design of two-dimensional (2D) and three-dimensional (3D) blades for axial compressors and turbines, and isolated blades or airfoils. The original axial turbine blade design method is improved, allowing it to use any leading-edge (LE) and trailing-edge (TE) shapes, such as circles and ellipses. The method to connect these LE and TE shapes to the remaining blade surfaces with curvature and slope of curvature continuity everywhere along the streamwise blade length, while concurrently overcoming the “wiggle” problems of higher-order polynomials is presented. This allows smooth surface pressure distributions, and easy integration of the CIRCLE method in heuristic blade-optimization methods. The method is further extended to 2D and 3D compressor blades and isolated airfoil geometries providing smooth variation of key blade parameters such as inlet and outlet flow angles, stagger angle, throat diameter, LE and TE radii, etc. from hub to tip. One sample 3D turbine blade geometry is presented. The efficacy of the method is examined by redesigning select blade geometries and numerically evaluating pressure-loss reduction at design and off-design conditions from the original blades: two typical 2D turbine blades; two typical 2D compressor blades; and one typical 2D isolated airfoil blade geometries are redesigned and evaluated with this method. Further extension of the method for centrifugal or mixed-flow impeller geometries is a coordinate transformation. It is concluded that the CIRCLE method is a robust tool for the design of high-efficiency turbomachinery blades.


Author(s):  
T. Korakianitis ◽  
I. A. Hamakhan ◽  
M. A. Rezaienia ◽  
A. P. S. Wheeler

The prescribed surface curvature distribution blade design (CIRCLE) method is presented for the design of two-dimensional (2D) and three-dimensional (3D) blades for axial compressors and turbines, and isolated blades or airfoils. The original axial turbine blade design method is improved, allowing it to use any leading-edge (LE) and trailing-edge (TE) shapes, such as circles and ellipses. The method to connect these LE and TE shapes to the remaining blade surfaces with curvature and slope of curvature continuity everywhere along the streamwise blade length, while concurrently overcoming the “wiggle” problems of higher-order polynomials is presented. This allows smooth surface pressure distributions, and easy integration of the CIRCLE method in heuristic blade-optimization methods. The method is further extended to 2D and 3D compressor blades and isolated airfoil geometries providing smooth variation of key blade parameters such as inlet and outlet flow angles, stagger angle, throat diameter, LE and TE radii etc. from hub to tip. One sample 3D turbine blade geometry is presented. The efficacy of the method is examined by redesigning select blade geometries and numerically evaluating pressure-loss reduction at design and off-design conditions from the original blades: two typical 2D turbine blades; two typical 2D compressor blades; and one typical 2D isolated airfoil blade geometries are redesigned and evaluated with this method. Further extension of the method for centrifugal or mixed-flow impeller geometries is a coordinate transformation. It is concluded that the CIRCLE method is a robust tool for the design of high-efficiency turbomachinery blades.


2016 ◽  
Vol 11 (1) ◽  
pp. 68-82 ◽  
Author(s):  
Xiang Shen ◽  
Eldad Avital ◽  
Mohammad Amin Rezaienia ◽  
Gordon Paul ◽  
Theodosios Korakianitis

This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE) method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.


2017 ◽  
Vol 12 (2) ◽  
pp. 105-116
Author(s):  
Pulung A. Pranantya ◽  
Nurlia Sadikin

In terms of geology, most areas in south of the Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the existence of underground river in caves, however, indicate the potential amount of water within the area, especially in the eastern part of the Gunungkidul District. Although limited information available, some fishermen have discovered that Seropan cave contains fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using a multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The isopach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results, i.e. 110o2223.6388 EL 8o42.874 SL. [DY1][PP2][DY1]Perbaiki grammarIn terms of geology, most areas in south of Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the exixtence of underground river in caves, however, indicate potential amount of water within the area especially in eastern part of Gunungkidul District. Although limited information available, some fishermans has discovered that Seropan cave contain fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The iso pach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results i.e. 110o2223.6388 EL 8o42.874 SL.[PP2]Sudah diperbaiki


Sign in / Sign up

Export Citation Format

Share Document