scholarly journals Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

2016 ◽  
Vol 11 (1) ◽  
pp. 68-82 ◽  
Author(s):  
Xiang Shen ◽  
Eldad Avital ◽  
Mohammad Amin Rezaienia ◽  
Gordon Paul ◽  
Theodosios Korakianitis

This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE) method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.

2015 ◽  
Vol 798 ◽  
pp. 589-595 ◽  
Author(s):  
Xiang Shen ◽  
Theodosios Korakianitis ◽  
Eldad Avital

The prescribed surface curvature distribution blade design (CIRCLE) method optimises aerofoils and blades by controlling curvature continuity and slope of curvature distribution along their surfaces. The symmetrical NACA0012 exhibits a surface curvature discontinuity at the leading edge point, and the non-symmetrical E387 exhibits slope-of-curvature discontinuities in the surface. The CIRCLE method is applied to both aerofoils to remove both surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analyses are used to investigate the curvature effects on aerodynamic performance of the original and modified aerofoils. These results are compared with experimental data obtained from tests on the original aerofoil geometry. The computed aerodynamic advantages of the modified aerofoil are analysed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects the aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 influences the size of the laminar separation bubble at lower Reynolds numbers, and it affects the inherent profile of the aerofoil at higher Reynolds numbers. It is concluded that the surface curvature distribution of aerofoils has a significant effect on aerofoil aerodynamic performance, which can be improved by redesigning the surface curvature distribution of the original aerofoil geometry.


2020 ◽  
Vol 197 ◽  
pp. 08015
Author(s):  
Simone Giaccherini ◽  
Filippo Mariotti ◽  
Lorenzo Pinelli ◽  
Michele Marconcini ◽  
Alessandro Bianchini

The working conditions of airfoils along modern wind turbine blades are putting new focus on the importance of properly characterizing the aerodynamic performance of different airfoil families also at high angles of attack (AoAs) beyond stall and at Reynolds numbers much lower (from few thousands to one million) than those commonly analyzed before. Several test cases are showing that even higher-order computational methods (like RANS/URANS CFD) are unable to properly capture the complex flow physics taking place past the blades, when deep stall occurs or when the AoA changes so rapidly to provoke the onset of dynamic stall. To fill this gap, the use of high-fidelity methods, like the Large Eddy Simulation (LES) is proposed, even though it implies a massive increase of the calculation cost. In order to analyze the prospects of using LES in comparison to RANS for low Reynolds, high AoAs, this work presents an in-depth study of the NACA 0021 aerodynamics at the Reynolds number of 80,000, by means of both traditional RANS approaches and high-fidelity (LES) simulations using the OpenFOAM suite. The selected airfoil has been showing in fact several issues in the correct characterization of its performance in similar conditions in many recent wind energy applications. The LES approach showed the ability to overcome the limitations of traditional RANS simulations, improving the accuracy of the results and reducing their dispersion thanks to the fact that the flow structures in the separated-flow regions are properly captured. Overall, this work underlines that accurate investigations of the aerodynamic performance of the NACA 0021 at low Reynolds require multiple sensitivity studies when RANS approaches are used, and suggests the use of LES simulations in order to increase the accuracy of estimations, especially when studying the stalledflow operating conditions of the airfoil.


Author(s):  
Jenny Baumann ◽  
Ulrich Rist ◽  
Martin Rose ◽  
Tobias Ries ◽  
Stephan Staudacher

The reduction of blade counts in the LP turbine is one possibility to cut down weight and therewith costs. At low Reynolds numbers the suction side laminar boundary layer of high lift LP turbine blades tends to separate and hence cause losses in turbine performance. To limit these losses, the control of laminar separation bubbles has been the subject of many studies in recent years. A project is underway at the University of Stuttgart that aims to suppress laminar separation at low Reynolds numbers (60,000) by means of actuated transition. In an experiment a separating flow is influenced by disturbances, small in amplitude and of a certain frequency, which are introduced upstream of the separation point. Small existing disturbances are therewith amplified, leading to earlier transition and a more stable boundary layer. The separation bubble thus gets smaller without need of a high air mass flow as for steady blowing or pulsed vortex generating jets. Frequency and amplitude are the parameters of actuation. The non-dimensional actuation frequency is varied from 0.2 to 0.5, whereas the normalized amplitude is altered between 5, 10 and 25% of the free stream velocity. Experimental investigations are made by means of PIV and hot wire measurements. Disturbed flow fields will be compared to an undisturbed one. The effectiveness of the presented boundary layer control will be compared to those of conventional ones. Phase-logged data will give an impression of the physical processes in the actuated flow.


1977 ◽  
Vol 82 (3) ◽  
pp. 583-604 ◽  
Author(s):  
Michael S. Kolansky ◽  
Sheldon Weinbaum ◽  
Robert Pfeffer

In Weinbaum et al. (1976) a simple new pressure hypothesis is derived which enables one to take account of the displacement interaction, the geometrical change in streamline radius of curvature and centrifugal effects in the thick viscous layers surrounding two-dimensional bluff bodies in the intermediate Reynolds number range O(1) < Re < O(102) using conventional Prandtl boundary-layer equations. The new pressure hypothesis states that the streamwise pressure gradient as a function of distance from the forward stagnation point on the displacement body is equal to the wall pressure gradient as a function of distance along the original body. This hypothesis is shown to be equivalent to stretching the streamwise body co-ordinate in conventional first-order boundary-layer theory. The present investigation shows that the same pressure hypothesis applies for the intermediate Reynolds number flow past axisymmetric bluff bodies except that the viscous term in the conventional axisymmetric boundary-layer equation must also be modified for transverse curvature effects O(δ) in the divergence of the stress tensor. The approximate solutions presented for the location of separation and the detailed surface pressure and vorticity distribution for the flow past spheres, spheroids and paraboloids of revolution at various Reynolds numbers in the range O(1) < Re < O(102) are in good agreement with available numerical Navier–Stokes solutions.


1962 ◽  
Vol 66 (619) ◽  
pp. 456-457 ◽  
Author(s):  
P. N. Joubert ◽  
E. R. Hoffman

The following is a report of preliminary tests to determine the effect of vortex generators on the drag of a circular cylinder. It was thought that with suitable placement of the vortex generators on the cylinder, the laminar separation of the boundary layer at subcritical Reynolds numbers might be delayed, and a reduction in drag coefficient obtained.


1991 ◽  
Vol 113 (2) ◽  
pp. 190-198 ◽  
Author(s):  
Ying-Jong Hong ◽  
Shou-Shing Hsieh ◽  
Huei-Jan Shih

Numerical results are presented concerning the fluid characteristics of steady-state laminar flow over surface mounted ribs. Computations are carried out using a false transient stream function-vorticity form. The effects of the aspect ratios (width-to-depth) of the ribs and Reynolds numbers as well as initial boundary-layer thickness on entire flow field, separated region, and reattachment length are presented and discussed. The computed reattachment distance compares reasonably well with those data reported by previous studies. A correlation is provided in terms of the rib aspect ratio, Reynolds number, and the ratio of boundary-layer thickness and rib height. The pressure drop is excessive along the upstream vertical step face and it recovers thereafter, which agrees qualitatively with those of the previous studies for the flow over backward-facing steps.


Author(s):  
B. Guyon ◽  
T. Arts

The calculation of surface temperature on gas turbine blades in severe operating conditions requires a detailed knowledge of boundary layers behaviour. The prediction of laminar to turbulent transition as to existence and location, as well as the evaluation of heat transfer rates are major concerns. The program developed by SNECMA for this purpose is presented, in which models are introduced to take into account the main effects occuring on blades without film-cooling. The algorithm and discretisation scheme for boundary layer equations is Patankar and Spalding’s, with profiles initialization by Pohlhausen’s method. The turbulence and transition model, after Mc Donald and Fish, was improved in search for more stability and to have a better detection of the beginning of the transition. Adams and Johnston’s model for curvature, including propagation effects, was adapted to a transitional boundary layer. The validation tests of this program are described, which are based on numerous experimental data taken from a bibliography of tests over flat plates and blades. Other tests use heat transfer rate measurements conducted by SNECMA, together with VKI, on vanes and blades in non-rotating grids. The calculation results are further compared to the STAN5 program results; they show a superiority in predicting the transfer rates on a convex surface and for transitional boundary layers.


1976 ◽  
Vol 20 (01) ◽  
pp. 40-50
Author(s):  
V. H. Arakeri ◽  
A. J. Acosta

A laminar separation on a body provides a site for the inception of cavitation. The separated region disappears when the boundary layer upstream becomes turbulent; this may occur naturally or by stimulation. The consequences of this disappearance on the values of the cavitation inception index and the type and appearance of the cavitation at inception are investigated on three different axisymmetric bodies. On one of these bodies, a hemisphere-cylinder, a trip near the nose so energized the boundary layer that it was impossible for any form of cavitation to remain attached to the body even when a tension of about one half atm. existed at the minimum pressure point on the body.


Sign in / Sign up

Export Citation Format

Share Document