Application of multi-linear regression models and machine learning techniques for online voltage stability margin estimation

Author(s):  
Bruno Leonardi ◽  
Venkataramana Ajjarapu ◽  
Miodrag Djukanovic ◽  
Pei Zhang
Author(s):  
Ivanna Baturynska

Additive manufacturing (AM) is an attractive technology for manufacturing industry due to flexibility in design and functionality, but inconsistency in quality is one of the major limitations that does not allow utilizing this technology for production of end-use parts. Prediction of mechanical properties can be one of the possible ways to improve the repeatability of the results. The part placement, part orientation, and STL model properties (number of mesh triangles, surface, and volume) are used to predict tensile modulus, nominal stress and elongation at break for polyamide 2200 (also known as PA12). EOS P395 polymer powder bed fusion system was used to fabricate 217 specimens in two identical builds (434 specimens in total). Prediction is performed for XYZ, XZY, ZYX, and Angle orientations separately, and all orientations together. The different non-linear models based on machine learning methods have higher prediction accuracy compared with linear regression models. Linear regression models have prediction accuracy higher than 80% only for Tensile Modulus and Elongation at break in Angle orientation. Since orientation-based modeling has low prediction accuracy due to a small number of data points and lack of information about material properties, these models need to be improved in the future based on additional experimental work.


2019 ◽  
Vol 9 (6) ◽  
pp. 1060
Author(s):  
Ivanna Baturynska

Additive manufacturing (AM) is an attractive technology for the manufacturing industry due to flexibility in its design and functionality, but inconsistency in quality is one of the major limitations preventing utilizing this technology for the production of end-use parts. The prediction of mechanical properties can be one of the possible ways to improve the repeatability of results. The part placement, part orientation, and STL model properties (number of mesh triangles, surface, and volume) are used to predict tensile modulus, nominal stress, and elongation at break for polyamide 2200 (also known as PA12). An EOS P395 polymer powder bed fusion system was used to fabricate 217 specimens in two identical builds (434 specimens in total). Prediction is performed for XYZ, XZY, ZYX, and Angle orientations separately, and all orientations together. The different non-linear models based on machine learning methods have higher prediction accuracy compared with linear regression models. Linear regression models only have prediction accuracy higher than 80% for Tensile Modulus and Elongation at break in Angle orientation. Since orientation-based modeling has low prediction accuracy due to a small number of data points and lack of information about the material properties, these models need to be improved in the future based on additional experimental work.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-17
Author(s):  
Astha Singh ◽  

The objective of this briefing is to present an overview of the topic, machine learning techniques currently in use or in consideration at statistical agencies worldwide. It is important to know the main reason why real-world scenarios should start exploring the use of machine learning techniques, terminology, approach and about few popular libraries in python, what regression is, by completely throwing light on simple as well as multiple linear and non-linear regression models and their applications, classification techniques, various clustering techniques. The material presented in this paper is the result of a study based on different models and the study of various datasets (analysis and choice of the correct model are important). While Machine Learning involves concepts of automation, it requires human guidance. Machine Learning involves a high level of generalization to get a system that performs well on yet-unseen data instances. Topics like regression, classification, and clustering, the report covers the insight of various techniques and their applications.


Author(s):  
Jonathan Becker ◽  
Aveek Purohit ◽  
Zheng Sun

USARSim group at NIST developed a simulated robot that operated in the Unreal Tournament 3 (UT3) gaming environment. They used a software PID controller to control the robot in UT3 worlds. Unfortunately, the PID controller did not work well, so NIST asked us to develop a better controller using machine learning techniques. In the process, we characterized the software PID controller and the robot’s behavior in UT3 worlds. Using data collected from our simulations, we compared different machine learning techniques including linear regression and reinforcement learning (RL). Finally, we implemented a RL based controller in Matlab and ran it in the UT3 environment via a TCP/IP link between Matlab and UT3.


2020 ◽  
Author(s):  
Pramod Kumar ◽  
Sameer Ambekar ◽  
Manish Kumar ◽  
Subarna Roy

This chapter aims to introduce the common methods and practices of statistical machine learning techniques. It contains the development of algorithms, applications of algorithms and also the ways by which they learn from the observed data by building models. In turn, these models can be used to predict. Although one assumes that machine learning and statistics are not quite related to each other, it is evident that machine learning and statistics go hand in hand. We observe how the methods used in statistics such as linear regression and classification are made use of in machine learning. We also take a look at the implementation techniques of classification and regression techniques. Although machine learning provides standard libraries to implement tons of algorithms, we take a look on how to tune the algorithms and what parameters of the algorithm or the features of the algorithm affect the performance of the algorithm based on the statistical methods.


2021 ◽  
Vol 309 ◽  
pp. 01163
Author(s):  
K. Anuradha ◽  
Deekshitha Erlapally ◽  
G. Karuna ◽  
V. Srilakshmi ◽  
K. Adilakshmi

Solar power is generated using photovoltaic (PV) systems all over the world. Because the output power of PV systems is alternating and highly dependent on environmental circumstances, solar power sources are unpredictable in nature. Irradiance, humidity, PV surface temperature, and wind speed are only a few of these variables. Because of the unpredictability in photovoltaic generating, it’s crucial to plan ahead for solar power generation as in solar power forecasting is required for electric grid. Solar power generation is weather-dependent and unpredictable, this forecast is complex and difficult. The impacts of various environmental conditions on the output of a PV system are discussed. Machine Learning (ML) algorithms have shown great results in time series forecasting and so can be used to anticipate power with weather conditions as model inputs. The use of multiple machine learning, Deep learning and artificial neural network techniques to perform solar power forecasting. Here in this regression models from machine learning techniques like support vector machine regressor, random forest regressor and linear regression model from which random forest regressor beaten the other two regression models with vast accuracy.


Sign in / Sign up

Export Citation Format

Share Document