scholarly journals Analytical Statistics Techniques of Classification and Regression in Machine Learning

2020 ◽  
Author(s):  
Pramod Kumar ◽  
Sameer Ambekar ◽  
Manish Kumar ◽  
Subarna Roy

This chapter aims to introduce the common methods and practices of statistical machine learning techniques. It contains the development of algorithms, applications of algorithms and also the ways by which they learn from the observed data by building models. In turn, these models can be used to predict. Although one assumes that machine learning and statistics are not quite related to each other, it is evident that machine learning and statistics go hand in hand. We observe how the methods used in statistics such as linear regression and classification are made use of in machine learning. We also take a look at the implementation techniques of classification and regression techniques. Although machine learning provides standard libraries to implement tons of algorithms, we take a look on how to tune the algorithms and what parameters of the algorithm or the features of the algorithm affect the performance of the algorithm based on the statistical methods.

Author(s):  
Jonathan Becker ◽  
Aveek Purohit ◽  
Zheng Sun

USARSim group at NIST developed a simulated robot that operated in the Unreal Tournament 3 (UT3) gaming environment. They used a software PID controller to control the robot in UT3 worlds. Unfortunately, the PID controller did not work well, so NIST asked us to develop a better controller using machine learning techniques. In the process, we characterized the software PID controller and the robot’s behavior in UT3 worlds. Using data collected from our simulations, we compared different machine learning techniques including linear regression and reinforcement learning (RL). Finally, we implemented a RL based controller in Matlab and ran it in the UT3 environment via a TCP/IP link between Matlab and UT3.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 492 ◽  
Author(s):  
Raul Moreno ◽  
David Moreno-Salinas ◽  
Joaquin Aranda

As a critical step to efficiently design control structures, system identification is concerned with building models of dynamical systems from observed input–output data. In this paper, a number of regression techniques are used for black-box marine system identification of a scale ship. Unlike other works that train the models using specific manoeuvres, in this work the data have been collected from several random manoeuvres and trajectories. Therefore, the aim is to develop general and robust mathematical models using real experimental data from random movements. The techniques used in this work are ridge, kernel ridge and symbolic regression, and the results show that machine learning techniques are robust approaches to model surface marine vehicles, even providing interpretable results in closed form equations using techniques such as symbolic regression.


Author(s):  
Sherri Rose

Abstract The field of health services research is broad and seeks to answer questions about the health care system. It is inherently interdisciplinary, and epidemiologists have made crucial contributions. Parametric regression techniques remain standard practice in health services research with machine learning techniques currently having low penetrance in comparison. However, studies in several prominent areas, including health care spending, outcomes and quality, have begun deploying machine learning tools for these applications. Nevertheless, major advances in epidemiological methods are also as yet underleveraged in health services research. This article summarizes the current state of machine learning in key areas of health services research, and discusses important future directions at the intersection of machine learning and epidemiological methods for health services research.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 511
Author(s):  
Duan Huang ◽  
Susu Liu ◽  
Ling Zhang

Quantum key distribution (QKD) offers information-theoretical security, while real systems are thought not to promise practical security effectively. In the practical continuous-variable (CV) QKD system, the deviations between realistic devices and idealized models might introduce vulnerabilities for eavesdroppers and stressors for two parties. However, the common quantum hacking strategies and countermeasures inevitably increase the complexity of practical CV systems. Machine-learning techniques are utilized to explore how to perceive practical imperfections. Here, we review recent works on secure CVQKD systems with machine learning, where the methods for detections and attacks were studied.


2016 ◽  
Vol 5 (11) ◽  
pp. 593-606
Author(s):  
Ki Yong Lee ◽  
YoonJae Shin ◽  
YeonJeong Choe ◽  
SeonJeong Kim ◽  
Young-Kyoon Suh ◽  
...  

2017 ◽  
pp. 36-58 ◽  
Author(s):  
Anand Narasimhamurthy

Medical image analysis is an area which has witnessed an increased use of machine learning in recent times. In this chapter, the authors attempt to provide an overview of applications of machine learning techniques to medical imaging problems, focusing on some of the recent work. The target audience comprises of practitioners, engineers, students and researchers working on medical image analysis, no prior knowledge of machine learning is assumed. Although the stress is mostly on medical imaging problems, applications of machine learning to other proximal areas will also be elucidated briefly. Health informatics is a relatively new area which deals with mining large amounts of data to gain useful insights. Some of the common challenges in health informatics will be briefly touched upon and some of the efforts in related directions will be outlined.


Author(s):  
Arul Murugan R. ◽  
Sathiyamoorthi V.

Machine learning (ML) is one of the exciting sub-fields of artificial intelligence (AI). The term machine learning is generally stated as the ability to learn without being explicitly programmed. In recent years, machine learning has become one of the thrust areas of research across various business verticals. The technical advancements in the field of big data have provided the ability to gain access over large volumes of diversified data at ease. This massive amount of data can be processed at high speeds in a reasonable amount of time with the help of emerging hardware capabilities. Hence the machine learning algorithms have been the most effective at leveraging all of big data to provide near real-time solutions even for the complex business problems. This chapter aims in giving a solid introduction to various widely adopted machine learning techniques and its applications categorized into supervised, unsupervised, and reinforcement and will serve a simplified guide for the aspiring data and machine learning enthusiasts.


2021 ◽  
Author(s):  
Hrvoje Kalinić ◽  
Zvonimir Bilokapić ◽  
Frano Matić

<p>In certain measurement endeavours spatial resolution of the data is restricted, while in others data have poor temporal resolution. Typical example of these scenarios come from geoscience where measurement stations are fixed and scattered sparsely in space which results in poor spatial resolution of acquired data. Thus, we ask if it is possible to use a portion of data as a proxy to estimate the rest of the data using different machine learning techniques. In this study, four supervised machine learning methods are trained on the wind data from the Adriatic Sea and used to reconstruct the missing data. The vector wind data components at 10m height are taken from ERA5 reanalysis model in range from 1981 to 2017 and sampled every 6 hours. Data taken from the northern part of the Adriatic Sea was used to estimate the wind at the southern part of Adriatic. The machine learning models utilized for this task were linear regression, K-nearest neighbours, decision trees and a neural network. As a measure of quality of reconstruction the difference between the true and estimated values of wind data in the southern part of Adriatic was used. The result shows that all four models reconstruct the data few hundred kilometres away with average amplitude error below 1m/s. Linear regression, K-nearest neighbours, decision trees and a neural network show average amplitude reconstruction error of 0.52, 0.91, 0.76 and 0.73, and standard deviation of 1.00, 1.42, 1.23 and 1.17, respectively. This work has been supported by Croatian Science Foundation under the project UIP-2019-04-1737.</p>


Sign in / Sign up

Export Citation Format

Share Document