Control Design for Unmanned Aerial Vehicle Using Fractional order Backstepping Control and Extended Homogenous Control

Author(s):  
Heera Lal Maurya ◽  
Padmini Singh ◽  
Laxmidhar Behera ◽  
Nishchal K. Verma
2017 ◽  
Vol 67 (3) ◽  
pp. 245 ◽  
Author(s):  
Sudhir Nadda ◽  
A. Swarup

The model of a quadrotor unmanned aerial vehicle (UAV) is nonlinear and dynamically unstable. A flight controller design is proposed on the basis of Lyapunov stability theory which guarantees that all the states remain and reach on the sliding surfaces. The control strategy uses sliding mode with a backstepping control to perform the position and attitude tracking control. This proposed controller is simple and effectively enhance the performance of quadrotor UAV. In order to demonstrate the robustness of the proposed control method, White Gaussian Noise and aerodynamic moment disturbances are taken into account. The performance of the nonlinear control method is evaluated by comparing the performance with developed linear quadratic regulator and existing backstepping control technique and proportional-integral-derivative from the literature. The comparative performance results demonstrate the superiority and effectiveness of the proposed control strategy for the quadrotor UAV.


Sign in / Sign up

Export Citation Format

Share Document