Altitude Control Design and Performance Validation for Unmanned Aerial Vehicle with a Single Ducted-Fan

2021 ◽  
Vol 25 (1) ◽  
pp. 23-35
Author(s):  
Minh-Thien Tran ◽  
Hwan-Cheol Park ◽  
Dong-Hun Lee ◽  
Young-Bok Kim
Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


2018 ◽  
Vol 6 (4) ◽  
pp. 235-248 ◽  
Author(s):  
Alton Yeung ◽  
Goetz Bramesfeld ◽  
Joon Chung ◽  
Stephen Foster

A small unmanned aerial vehicle (SUAV) was developed with the specific objective to explore atmospheric wind gusts at low altitudes below 500 m. These gusts have significant impact on the flight characteristics and performance of SUAVs. The SUAV carried an advanced air-data system that includes a five-hole probe, which was adapted for this specific application. In several flight tests the entire test system was qualified and gust data were recorded. The subsequent experimentally derived gust data were post-processed and compared with turbulence spectra of the MIL-HDBK-1797 von Kármán turbulence model. On the day of the flight test, the experimental results did not fully match the prediction of the von Kármán model. Meanwhile, the wind measuring apparatus were proven to be able to measure gust during flight. Therefore, a broader sampling will be required to generalize the gust measurements and be compared with the existing models.


Author(s):  
Peter D. Lysak ◽  
James J. Dreyer ◽  
John B. Fahnline ◽  
Dean E. Capone ◽  
John E. Poremba

An acoustic analysis of a ducted fan unmanned aerial vehicle (UAV) was conducted to identify the primary aeroacoustic sources and to determine the potential for reducing the radiated noise levels. Computational fluid dynamics was used to determine the three-dimensional flow field through the ducted fan in hover and maneuvering configurations. The flow solutions provided information about the blade relative velocities, spatially non-uniform inflow, inflow turbulence, boundary layer turbulence, and blade wake velocity deficits for use in acoustical models of broadband and blade passing frequency noise. The computational results were in good agreement with experimentally measured noise levels, and showed that the tonal noise was produced primarily by unsteady forces resulting from the non-uniform inflow, while the broadband noise resulted from the inflow turbulence. Based on these findings, design modifications were recommended which offer the potential to reduce the noise by more than 10 dB.


Sign in / Sign up

Export Citation Format

Share Document