scholarly journals Room temperature Silicon detector for IR range coated with Ag2S Quantum Dots

Author(s):  
Ivan Tretyakov ◽  
Oleg Ovchinnikov ◽  
Gregory Goltsman ◽  
Sergey Svyatodukh ◽  
Anastasya Chumakova ◽  
...  
2019 ◽  
Vol 13 (9) ◽  
pp. 1900187 ◽  
Author(s):  
Ivan Tretyakov ◽  
Alexander Shurakov ◽  
Alexey Perepelitsa ◽  
Natalya Kaurova ◽  
Sergey Svyatodukh ◽  
...  

2020 ◽  
Vol 187 (3) ◽  
Author(s):  
Olaya Amor-Gutiérrez ◽  
Alba Iglesias-Mayor ◽  
Pablo Llano-Suárez ◽  
José M. Costa-Fernández ◽  
Ana Soldado ◽  
...  

2009 ◽  
Vol 6 (S2) ◽  
pp. S650-S653
Author(s):  
L. Nevou ◽  
J. Mangeney ◽  
M. Tchernycheva ◽  
F. H. Julien ◽  
F. Guillot ◽  
...  

2021 ◽  
Vol 238 ◽  
pp. 111514
Author(s):  
Sergii Golovynskyi ◽  
Oleksandr I. Datsenko ◽  
Luca Seravalli ◽  
Giovanna Trevisi ◽  
Paola Frigeri ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Qianqian Zhao ◽  
Wenrong Cai ◽  
Bao-Zhu Yang ◽  
Zhengzhi Yin ◽  
Datong Wu ◽  
...  

Well dispersed chiral Ag2S quantum dots (Ag2S QDs) were facilely synthesized by using N-acetyl-L-cysteine (NALC) as the chiral ligand, which were loaded onto the nanosheets of two-dimensional (2D) few-layer carbon...


Nanoscale ◽  
2021 ◽  
Author(s):  
Dongdong Yan ◽  
Qionghua Mo ◽  
Shuangyi Zhao ◽  
Wensi Cai ◽  
Zhigang Zang

With a high photoluminescence quantum yield (PLQY) being able to exceed 90% for those prepared by hot injection method, CsPbBr3 quantum dots (QDs) have attracted intensive attentions for white light-emitting...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 690
Author(s):  
Leonardo Ranasinghe ◽  
Christian Heyn ◽  
Kristian Deneke ◽  
Michael Zocher ◽  
Roman Korneev ◽  
...  

Epitaxially grown quantum dots (QDs) are established as quantum emitters for quantum information technology, but their operation under ambient conditions remains a challenge. Therefore, we study photoluminescence (PL) emission at and close to room temperature from self-assembled strain-free GaAs quantum dots (QDs) in refilled AlGaAs nanoholes on (001)GaAs substrate. Two major obstacles for room temperature operation are observed. The first is a strong radiative background from the GaAs substrate and the second a significant loss of intensity by more than four orders of magnitude between liquid helium and room temperature. We discuss results obtained on three different sample designs and two excitation wavelengths. The PL measurements are performed at room temperature and at T = 200 K, which is obtained using an inexpensive thermoelectric cooler. An optimized sample with an AlGaAs barrier layer thicker than the penetration depth of the exciting green laser light (532 nm) demonstrates clear QD peaks already at room temperature. Samples with thin AlGaAs layers show room temperature emission from the QDs when a blue laser (405 nm) with a reduced optical penetration depth is used for excitation. A model and a fit to the experimental behavior identify dissociation of excitons in the barrier below T = 100 K and thermal escape of excitons from QDs above T = 160 K as the central processes causing PL-intensity loss.


Nanoscale ◽  
2020 ◽  
Vol 12 (41) ◽  
pp. 21459-21459
Author(s):  
Charlotte Marshall

Retraction of ‘Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region’ by Rijun Gui et al., Nanoscale, 2014, 6, 5467–5473, DOI: 10.1039/C4NR00282B.


Sign in / Sign up

Export Citation Format

Share Document