Parallel coupled actuators for high performance force control: a micro-macro concept

Author(s):  
J.B. Morrell ◽  
J.K. Salisbury
2011 ◽  
Vol 48-49 ◽  
pp. 589-592 ◽  
Author(s):  
Shi Xiang Tian ◽  
Sheng Ze Wang

In this paper, a novel hybrid position/force controller has been proposed for a three degree of freedom (3-DOF) of robot trajectory following that is required to switch between position and force control. The whole controller consists of two components: a positional controller and a force controller. Depending on whether the end-effector is in free space or in contact with the environments during work, the two subcontrollers run simultaneously to guide the manipulator tracking in free space and constraint environments. After the principle and stability of the controller are briefly analyzed, simulation results verify that the proposed controller attains a high performance.


2016 ◽  
Vol 826 ◽  
pp. 128-133 ◽  
Author(s):  
Hyo Gon Kim ◽  
Jong Won Lee ◽  
Yong Ho Choi ◽  
Jeong Woo Park ◽  
Jin Ho Suh

Because hydraulic actuator has higher power and force density, it is normally used in heavy load manipulator robots and industrial equipment which require high torque. Also, the hydraulic actuator is applied to underwater robots that need high performance maneuver in underwater operations. The force control has benefits to those kind of robots to ensure compliance with user or environment. However, the hydraulic actuator is difficult to control forces due to the non-linearity characteristic of the hydraulic servo system. In this paper, we propose a force control method with compensation of force derivative and natural velocity feedback. We also describe a method of applying it to the real system. In order to evaluate the effect of the proposed control method, the simulations and experiments were performed.


Author(s):  
Shan Chen ◽  
Tenghui Han ◽  
Fangfang Dong ◽  
Lei Lu ◽  
Haijun Liu ◽  
...  

Lower limb exoskeleton which augments the human performance is a wearable human–machine integrated system used to assist people carrying heavy loads. Recently, underactuated lower limb exoskeleton systems with some passive joints become more and more attractive due to the advantages of smaller weight, lower system energy consumption and lower cost. However, because of the less of control inputs, the existed control methods of fully actuated exoskeletons cannot be extended to underactuated systems, which makes the robust controller design of underactuated lower limb exoskeletons becomes more challenged. This article focuses on the high-performance human–machine interaction force control design of underactuated lower limb exoskeletons with passive ankle joint. In order to solve the reduction of control inputs, the holonomic constraint from the wearer is considered, which help transform the dynamics of 3-degree-of-freedom underactuated exoskeleton in joint space into a 2-degree-of-freedom fully actuated system in Cartesian space. A two-level interaction force controller using adaptive robust control algorithm is proposed to effectively address the negative effect of various model uncertainties and external disturbances. In order to facilitate the control parameter selection, a gain tuning method is also presented. Comparative simulations are carried out, which indicate that the proposed two-level interaction force controller achieves smaller interaction force and better robust performance to various modeling errors and disturbances.


Author(s):  
Tetsuya Asai ◽  
Yuzuru Ohba ◽  
Kiyoshi Ohishi ◽  
Katsuyuki Majima ◽  
Shiro Urushihara ◽  
...  

2014 ◽  
Vol 703 ◽  
pp. 250-253 ◽  
Author(s):  
Yi Chen Liu ◽  
Huang Qiu Zhu ◽  
Li Dong Zhu

A bearingless brushless DC motor is a new type of high performance motor, which integrates the function of magnetic bearings into a brushless DC motor. In this paper, the suspension force control system is improved and optimization designed according to the radial suspension force mathematical model. The bearingless brushless DC motor control system model is established with the aid of Matlab/Simulink software. From the simulation results, it is confirmed that the rotor shaft is stably suspended without the mechanical contacts. The proposed suspension control system is found suitable to realize the stable suspension of the rotor in the bearingless brushless DC motor.


2014 ◽  
Vol 61 (2) ◽  
pp. 994-1008 ◽  
Author(s):  
Thao Tran Phuong ◽  
Kiyoshi Ohishi ◽  
Yuki Yokokura ◽  
Chowarit Mitsantisuk

Sign in / Sign up

Export Citation Format

Share Document