Asymptotically stable gait generation for biped robot based on mechanical energy balance

Author(s):  
Fumihiko Asano ◽  
Zhi-Wei Luo
Robotica ◽  
2009 ◽  
Vol 27 (7) ◽  
pp. 1063-1073 ◽  
Author(s):  
Yuji Harata ◽  
Fumihiko Asano ◽  
Zhi-Wei Luo ◽  
Kouichi Taji ◽  
Yoji Uno

SUMMARYRestoration of mechanical energy dissipating on impact at the ground is necessary for sustainable gait generation. Parametric excitation is one approach to restore the mechanical energy. Asano et al. (“Parametric excitation mechanisms for dynamic bipedal walking,” IEEE International Conference on Robotics and Automation (2005) pp. 611–617.) applied parametric excitation to a biped robot with telescopic-legs, in which up-and-down motion restores total mechanical energy like playing on the swing. In this paper, parametric excitation principle is applied to a kneed biped robot with only knee actuation and it is shown that the robot walks successively without hip actuation. We also examine influences of several parameters and reference trajectory on walking performance.


Robotica ◽  
2009 ◽  
Vol 27 (6) ◽  
pp. 949-958 ◽  
Author(s):  
Fumihiko Asano ◽  
Zhi-Wei Luo

SUMMARYWe investigated and identified the conditions necessary for stable dynamic gait generation in biped robots from the mechanical energy balance point of view. The equilibrium point at impact in a dynamic gait is uniquely determined by two conditions; keeping the restored mechanical energy constant and settling the relative hip-joint angle to the desired value before impact. The generated gait then becomes asymptotically stable around the equilibrium point determined by these conditions. This is shown by a simple recurrence formula of the kinetic energy immediately before impact. We verified this stability theorem using numerical simulation of virtual passive dynamic walking. The results were compared with those for a rimless wheel and an inherent stability principle was derived. Finally, we derived a robust control law using a reference mechanical energy trajectory and demonstrated its effectiveness numerically.


Robotica ◽  
2011 ◽  
Vol 29 (6) ◽  
pp. 831-841 ◽  
Author(s):  
Yuji Harata ◽  
Fumihiko Asano ◽  
Kouichi Taji ◽  
Yoji Uno

SUMMARYIn a gait generation method based on the parametric excitation principle, appropriate motion of the center of mass restores kinetic energy lost by heel strike. The motion is realized by bending and stretching a swing-leg regardless of bending direction. In this paper, we first show that inverse bending restores more mechanical energy than forward bending, and then propose a parametric excitation-based inverse bending gait for a kneed biped robot, which improves gait efficiency of parametric excitation walking.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097634
Author(s):  
Huan Tran Thien ◽  
Cao Van Kien ◽  
Ho Pham Huy Anh

This article proposes a new stable biped walking pattern generator with preset step-length value, optimized by multi-objective JAYA algorithm. The biped robot is modeled as a kinetic chain of 11 links connected by 10 joints. The inverse kinematics of the biped is applied to derive the specified biped hip and feet positions. The two objectives related to the biped walking stability and the biped to follow the preset step-length magnitude have been fully investigated and Pareto optimal front of solutions has been acquired. To demonstrate the effectiveness and superiority of proposed multi-objective JAYA, the results are compared to those of MO-PSO and MO-NSGA-2 optimization approaches. The simulation and experiment results investigated over the real small-scaled biped HUBOT-4 assert that the multi-objective JAYA technique ensures an outperforming effective and stable gait planning and walking for biped with accurate preset step-length value.


Sign in / Sign up

Export Citation Format

Share Document