scholarly journals Parametric excitation-based inverse bending gait generation

Robotica ◽  
2011 ◽  
Vol 29 (6) ◽  
pp. 831-841 ◽  
Author(s):  
Yuji Harata ◽  
Fumihiko Asano ◽  
Kouichi Taji ◽  
Yoji Uno

SUMMARYIn a gait generation method based on the parametric excitation principle, appropriate motion of the center of mass restores kinetic energy lost by heel strike. The motion is realized by bending and stretching a swing-leg regardless of bending direction. In this paper, we first show that inverse bending restores more mechanical energy than forward bending, and then propose a parametric excitation-based inverse bending gait for a kneed biped robot, which improves gait efficiency of parametric excitation walking.

Robotica ◽  
2009 ◽  
Vol 27 (7) ◽  
pp. 1063-1073 ◽  
Author(s):  
Yuji Harata ◽  
Fumihiko Asano ◽  
Zhi-Wei Luo ◽  
Kouichi Taji ◽  
Yoji Uno

SUMMARYRestoration of mechanical energy dissipating on impact at the ground is necessary for sustainable gait generation. Parametric excitation is one approach to restore the mechanical energy. Asano et al. (“Parametric excitation mechanisms for dynamic bipedal walking,” IEEE International Conference on Robotics and Automation (2005) pp. 611–617.) applied parametric excitation to a biped robot with telescopic-legs, in which up-and-down motion restores total mechanical energy like playing on the swing. In this paper, parametric excitation principle is applied to a kneed biped robot with only knee actuation and it is shown that the robot walks successively without hip actuation. We also examine influences of several parameters and reference trajectory on walking performance.


Robotica ◽  
2010 ◽  
Vol 29 (4) ◽  
pp. 585-593 ◽  
Author(s):  
Kouichi Taji ◽  
Yoshihisa Banno ◽  
Yuji Harata

SUMMARYIn parametric excitation walking, up-and-down motion of the center of mass restores mechanical energy and sustainable gait is generated. Not only walking performance but also walking ability strongly depends on the reference trajectory of the center of mass. In this paper, we propose an optimization method for the reference trajectory, in which the reference trajectory is confined to the quartic spline curves and the parameters of spline curves are optimized by a local search method usually used in combinatorial optimization. We apply the proposed method to a kneed biped robot and find some remarkably interesting results by numerical simulations.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110362
Author(s):  
Zelin Huang ◽  
Zhangguo Yu ◽  
Xuechao Chen ◽  
Qingqing Li ◽  
Libo Meng ◽  
...  

Knee-stretched walking is considered to be a human-like and energy-efficient gait. The strategy of extending legs to obtain vertical center of mass trajectory is commonly used to avoid the problem of singularities in knee-stretched gait generation. However, knee-stretched gait generation utilizing this strategy with toe-off and heel-strike has kinematics conflicts at transition moments between single support and double support phases. In this article, a knee-stretched walking generation with toe-off and heel-strike for the position-controlled humanoid robot has been proposed. The position constraints of center of mass have been considered in the gait generation to avoid the kinematics conflicts based on model predictive control. The method has been verified in simulation and validated in experiment.


1997 ◽  
Vol 200 (16) ◽  
pp. 2177-2188 ◽  
Author(s):  
C T Farley ◽  
T C Ko

Lizards bend their trunks laterally with each step of locomotion and, as a result, their locomotion appears to be fundamentally different from mammalian locomotion. The goal of the present study was to determine whether lizards use the same two basic gaits as other legged animals or whether they use a mechanically unique gait due to lateral trunk bending. Force platform and kinematic measurements revealed that two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, used two basic gaits similar to mammalian walking and trotting gaits. In both gaits, the kinetic energy fluctuations due to lateral movements of the center of mass were less than 5% of the total external mechanical energy fluctuations. In the walking gait, both species vaulted over their stance limbs like inverted pendulums. The fluctuations in kinetic energy and gravitational potential energy of the center of mass were approximately 180 degrees out of phase. The lizards conserved as much as 51% of the external mechanical energy required for locomotion by the inverted pendulum mechanism. Both species also used a bouncing gait, similar to mammalian trotting, in which the fluctuations in kinetic energy and gravitational potential energy of the center of mass were nearly exactly in phase. The mass-specific external mechanical work required to travel 1 m (1.5 J kg-1) was similar to that for other legged animals. Thus, in spite of marked lateral bending of the trunk, the mechanics of lizard locomotion is similar to the mechanics of locomotion in other legged animals.


1997 ◽  
Vol 200 (13) ◽  
pp. 1919-1929 ◽  
Author(s):  
R Kram ◽  
B Wong ◽  
R J Full

We tested the hypothesis that fast-running hexapeds must generate high levels of kinetic energy to cycle their limbs rapidly compared with bipeds and quadrupeds. We used high-speed video analysis to determine the three-dimensional movements of the limbs and bodies of cockroaches (Blaberus discoidalis) running on a motorized treadmill at 21 cm s-1 using an alternating tripod gait. We combined these kinematic data with morphological data to calculate the mechanical energy produced to move the limbs relative to the overall center of mass and the mechanical energy generated to rotate the body (head + thorax + abdomen) about the overall center of mass. The kinetic energy involved in moving the limbs was 8 microJ stride-1 (a power output of 21 mW kg-1, which was only approximately 13% of the external mechanical energy generated to lift and accelerate the overall center of mass at this speed. Pitch, yaw and roll rotational movements of the body were modest (less than +/- 7 degrees), and the mechanical energy required for these rotations was surprisingly small (1.7 microJ stride-1 for pitch, 0.5 microJ stride-1 for yaw and 0.4 microJ stride-1 for roll) as was the power (4.2, 1.2 and 1.1 mW kg-1, respectively). Compared at the same absolute forward speed, the mass-specific kinetic energy generated by the trotting hexaped to swing its limbs was approximately half of that predicted from data on much larger two- and four-legged animals. Compared at an equivalent speed (mid-trotting speed), limb kinetic energy was a smaller fraction of total mechanical energy for cockroaches than for large bipedal runners and hoppers and for quadrupedal trotters. Cockroaches operate at relatively high stride frequencies, but distribute ground reaction forces over a greater number of relatively small legs. The relatively small leg mass and inertia of hexapeds may allow relatively high leg cycling frequencies without exceptionally high internal mechanical energy generation.


2011 ◽  
Vol 57 (205) ◽  
pp. 857-860 ◽  
Author(s):  
Othmar Buser ◽  
Perry Bartelt

AbstractSnow avalanches possess two types of kinetic energy: the kinetic energy associated with the mean velocity in the downhill direction and the kinetic energy associated with individual particle velocities that vary from the mean. The mean kinetic energy is directional; the kinetic energy associated with the velocity fluctuations is non-directional in the sense that it is connected to random particle movements. However, the rigid, basal boundary directs the random fluctuation energy into the avalanche. Thus, the random energy flux is converted to free mechanical energy which lifts and dilates the avalanche flow mass, changing the flow density and increasing the normal (dispersive) pressure and, as a consequence, changing the flow resistance. In this paper we derive macroscopic relations that link the production of the random kinetic energy to the perpendicular acceleration of the avalanche’s center of mass. We show that a single burst of fluctuation energy will produce pressures that oscillate around the hydrostatic pressure. Because we do not include a damping process, the oscillations of the center of mass remain, even if the production of random kinetic energy stops. We formulate relationships that can be used within the framework of depth-averaged mass and momentum equations that are often used to simulate snow avalanches in realistic terrain.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antoine Riaud ◽  
Cui Wang ◽  
Jia Zhou ◽  
Wanghuai Xu ◽  
Zuankai Wang

AbstractElectric energy generation from falling droplets has seen a hundred-fold rise in efficiency over the past few years. However, even these newest devices can only extract a small portion of the droplet energy. In this paper, we theoretically investigate the contributions of hydrodynamic and electric losses in limiting the efficiency of droplet electricity generators (DEG). We restrict our analysis to cases where the droplet contacts the electrode at maximum spread, which was observed to maximize the DEG efficiency. Herein, the electro-mechanical energy conversion occurs during the recoil that immediately follows droplet impact. We then identify three limits on existing droplet electric generators: (i) the impingement velocity is limited in order to maintain the droplet integrity; (ii) much of droplet mechanical energy is squandered in overcoming viscous shear force with the substrate; (iii) insufficient electrical charge of the substrate. Of all these effects, we found that up to 83% of the total energy available was lost by viscous dissipation during spreading. Minimizing this loss by using cascaded DEG devices to reduce the droplet kinetic energy may increase future devices efficiency beyond 10%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Fumery ◽  
Nicolas A. Turpin ◽  
Laetitia Claverie ◽  
Vincent Fourcassié ◽  
Pierre Moretto

AbstractThe biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.


Sign in / Sign up

Export Citation Format

Share Document