New dynamic models for planar extensible continuum robot manipulators

Author(s):  
Enver Tatlicioglu ◽  
Ian D. Walker ◽  
Darren M. Dawson
ISRN Robotics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Ian D. Walker

This paper describes and discusses the history and state of the art of continuous backbone robot manipulators. Also known as continuum manipulators, these robots, which resemble biological trunks and tentacles, offer capabilities beyond the scope of traditional rigid-link manipulators. They are able to adapt their shape to navigate through complex environments and grasp a wide variety of payloads using their compliant backbones. In this paper, we review the current state of knowledge in the field, focusing particularly on kinematic and dynamic models for continuum robots. We discuss the relationships of these robots and their models to their counterparts in conventional rigid-link robots. Ongoing research and future developments in the field are discussed.


Author(s):  
Laxmidhar Behera ◽  
Swagat Kumar ◽  
Prem Kumar Patchaikani ◽  
Ranjith Ravindranathan Nair ◽  
Samrat Dutta

Author(s):  
Isuru S. Godage ◽  
Raul Wirz ◽  
Ian D. Walker ◽  
Robert J. Webster

Continuum robot dynamic models have previously involved a choice between high accuracy, numerically intensive models, and low accuracy, computationally efficient models. The objective of this paper is to provide an accurate dynamic model with low computational overhead. Our approach is to place point masses at the center of gravity of the continuum section, rather than along the robot’s backbone or centerline. This enables the model to match the robot’s energetic characteristics with many fewer point masses. We experimentally validate the model using a pneumatic muscle actuated continuum arm. We find that the proposed model successfully captures both the transient and steady state dynamics of the arm.


2014 ◽  
Vol 6 (4) ◽  
Author(s):  
William S. Rone ◽  
Pinhas Ben-Tzvi

This paper presents a novel modeling approach for the mechanics of multisegment, rod-driven continuum robots. This modeling approach utilizes a high-fidelity lumped parameter model that captures the variation in curvature along the robot while simultaneously defined by a discrete set of variables and utilizes the principle of virtual power to formulate the statics and dynamics of the continuum robot as a set of algebraic equations for the static model and as a set of coupled ordinary differential equations (ODEs) in time for the dynamic model. The actuation loading on the robot by the actuation rods is formulated based on the calculation of contact forces that result in rod equilibrium. Numerical optimization calculates the magnitudes of these forces, and an iterative solver simultaneously estimates the robot's friction and contact forces. In addition, modeling considerations including variable elastic loading among segments and mutual segment loading due to rods terminating at different disks are presented. The resulting static and dynamic models have been compared to dynamic finite element analyses and experimental results to validate their accuracy.


Author(s):  
Chang-Jin Li ◽  
T. S. Sankar ◽  
A. Hemami

Abstract In this paper, two fast computational algorithms are developed for effective formulation for the linearized dynamic robot models with varying (kinematic and dynamic) link parameters. The proposed algorithms can generate complete linearized (inverse) dynamic models for robot manipulators, taking variations (e.g., inexactness, inconstancy, or uncertainty) of the kinematic and dynamic link parameters into account. They can be applied to any robot manipulator with rotational and/or translational joints, and can be utilized, also, for sensivitity analysis of similar mechanical systems. The computational complexity of these algorithms is only of order O(n), where n is the number of degrees-of-freedom of the robot manipulator.


Sign in / Sign up

Export Citation Format

Share Document