Efficient Spatial Dynamics for Continuum Arms

Author(s):  
Isuru S. Godage ◽  
Raul Wirz ◽  
Ian D. Walker ◽  
Robert J. Webster

Continuum robot dynamic models have previously involved a choice between high accuracy, numerically intensive models, and low accuracy, computationally efficient models. The objective of this paper is to provide an accurate dynamic model with low computational overhead. Our approach is to place point masses at the center of gravity of the continuum section, rather than along the robot’s backbone or centerline. This enables the model to match the robot’s energetic characteristics with many fewer point masses. We experimentally validate the model using a pneumatic muscle actuated continuum arm. We find that the proposed model successfully captures both the transient and steady state dynamics of the arm.

2021 ◽  
pp. 1-9
Author(s):  
Harshadkumar B. Prajapati ◽  
Ankit S. Vyas ◽  
Vipul K. Dabhi

Face expression recognition (FER) has gained very much attraction to researchers in the field of computer vision because of its major usefulness in security, robotics, and HMI (Human-Machine Interaction) systems. We propose a CNN (Convolutional Neural Network) architecture to address FER. To show the effectiveness of the proposed model, we evaluate the performance of the model on JAFFE dataset. We derive a concise CNN architecture to address the issue of expression classification. Objective of various experiments is to achieve convincing performance by reducing computational overhead. The proposed CNN model is very compact as compared to other state-of-the-art models. We could achieve highest accuracy of 97.10% and average accuracy of 90.43% for top 10 best runs without any pre-processing methods applied, which justifies the effectiveness of our model. Furthermore, we have also included visualization of CNN layers to observe the learning of CNN.


Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu

To solve the urbanization and the economic challenges, a virtual track train (VTT) transportation system has been proposed in China. To evaluate the dynamic behavior of the VTT, a spatial dynamics model has been developed that considers the suspension system and the steering system. Additionally, the model takes into account road irregularity to make simulations more realistic. Based on the newly proposed dynamic model and a designed proportional–integral–derivative (PID) controller, simulation frames of the vehicle and of the VTT are established with the path-tracking performance. The results show that the vehicle and the VTT can run along a desired lane with allowable errors, verifying the proposed model. The vehicle and VTT with the four-wheel steering system show a better dynamic performance than the models with the front-wheel steering system in the curved section. Moreover, the simulation frame can be further applied to dynamics-related assessments, parameter optimization and active suspension control strategy.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 920
Author(s):  
Liesle Caballero ◽  
Álvaro Perafan ◽  
Martha Rinaldy ◽  
Winston Percybrooks

This paper deals with the problem of determining a useful energy budget for a mobile robot in a given environment without having to carry out experimental measures for every possible exploration task. The proposed solution uses machine learning models trained on a subset of possible exploration tasks but able to make predictions on untested scenarios. Additionally, the proposed model does not use any kinematic or dynamic models of the robot, which are not always available. The method is based on a neural network with hyperparameter optimization to improve performance. Tabu List optimization strategy is used to determine the hyperparameter values (number of layers and number of neurons per layer) that minimize the percentage relative absolute error (%RAE) while maximize the Pearson correlation coefficient (R) between predicted data and actual data measured under a number of experimental conditions. Once the optimized artificial neural network is trained, it can be used to predict the performance of an exploration algorithm on arbitrary variations of a grid map scenario. Based on such prediction, it is possible to know the energy needed for the robot to complete the exploration task. A total of 128 tests were carried out using a robot executing two exploration algorithms in a grid map with the objective of locating a target whose location is not known a priori by the robot. The experimental energy consumption was measured and compared with the prediction of our model. A success rate of 96.093% was obtained, measured as the percentage of tests where the energy budget suggested by the model was enough to actually carry out the task when compared to the actual energy consumed in the test, suggesting that the proposed model could be useful for energy budgeting in actual mobile robot applications.


Author(s):  
Kuo Liu ◽  
Haibo Liu ◽  
Te Li ◽  
Yongqing Wang ◽  
Mingjia Sun ◽  
...  

The conception of the comprehensive thermal error of servo axes is given. Thermal characteristics of a preloaded ball screw on a gantry milling machine is investigated, and the error and temperature data are obtained. The comprehensive thermal error is divided into two parts: thermal expansion error ((TEE) in the stroke range) and thermal drift error ((TDE) of origin). The thermal mechanism and thermal error variation of preloaded ball screw are expounded. Based on the generation, conduction, and convection theory of heat, the thermal field models of screw caused by friction of screw-nut pairs and bearing blocks are derived. The prediction for TEE is presented based on thermal fields of multiheat sources. Besides, the factors influencing TDE are analyzed, and the model of TDE is established based on the least square method. The predicted thermal field of the screw is analyzed. The simulation and experimental results indicate that high accuracy stability can be obtained using the proposed model. Moreover, high accuracy stability can still be achieved even if the moving state of servo axis changes randomly, the screw is preloaded, and the thermal deformation process is complex. Strong robustness of the model is verified.


Author(s):  
Feng Jie Zheng ◽  
Fu Zheng Qu ◽  
Xue Guan Song

Reservoir-pipe-valve (RPV) systems are widely used in many industrial process. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operation such as rapid valve opening/closing. To investigate the pressure especially the pressure fluctuation in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled by a zero-dimensional virtual point, the pipe is modeled by a one-dimensional MOC, and the valve is modeled by a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted, in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve are obtained. The results show that the proposed model is in good agreement with the full CFD model in both large-scale and small-scale spaces. Moreover, the proposed model is more computationally efficient than the CFD model, which provides a feasibility in the analysis of complex RPV system within an affordable computational time.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Feng Jie Zheng ◽  
Chao Yong Zong ◽  
William Dempster ◽  
Fu Zheng Qu ◽  
Xue Guan Song

Reservoir-pipe-valve (RPV) systems are widely used in many industrial processes. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operations such as rapid valve opening or closing. To investigate the pressure response, with particular interest in the pressure fluctuations in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled as a zero-dimensional virtual point, the pipe is modeled as a one-dimensional system using the MOC, and the valve is modeled using a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve is obtained. The results show that the proposed model is in good agreement when compared with a high fidelity CFD model used to represent both large-scale and small-scale spaces. As expected, the proposed model is significantly more computationally efficient than the CFD model. This demonstrates the feasibility of analyzing complex RPV systems within an affordable computational time.


2021 ◽  
Vol 12 ◽  
Author(s):  
Navjot Bhullar ◽  
Rebecca L. Sanford ◽  
Myfanwy Maple

The Continuum of Survivorship proposes a way in which individuals may experience the suicide death of someone known to them along a continuum from being exposed to the death through to long-term bereavement. The present study provides a first empirical testing of the proposed model in an Australian community sample exposed to suicide. Using a Latent Profile Analysis, we tested the suicide exposure risk factors (time since death, frequency of pre-death contact, reported closeness, and perceived impact) to map to the Continuum of Survivorship model. Results revealed identification of five profiles, with four ranging from suicide exposed to suicide bereaved long-term broadly aligning with the proposed model, with one further profile being identified that represented a discordant profile of low closeness and high impact of suicide exposure. Our findings demonstrate that while the proposed model is useful to better understand the psychological distress related to exposure to suicide, it cannot be used as “shorthand” for identifying those who will be most distressed, nor those who may most likely need additional support following a suicide death. Implications and future research directions are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
GuoHua Gao ◽  
Pengyu Wang ◽  
Hao Wang

Purpose The purpose of this paper is to present a follow-the-leader motion strategy for multi-section continuum robots, which aims to make the robot have the motion ability in a confined environment and avoid a collision. Design/methodology/approach First, the mechanical design of a multi-section continuum robot is introduced and the forward kinematic model is built. After that, the follow-the-leader motion strategy is proposed and the differential evolution (DE) algorithm for calculating optimal posture parameters is presented. Then simulations and experiments are carried out on a series of predefined paths to analyze the performance of the follow-the-leader motion. Findings The follow-the-leader motion can be well performed on the continuum robots this study proposes in this research. The experimental results show that the deviation from the path is less than 9.7% and the tip error is no more than 15.6%. Research limitations/implications Currently, the follow-the-leader motion is affected by the following factors such as gravity and continuum robot design. Furthermore, the position error is not compensated under open-loop control. In future work, this paper will improve the accuracy of the robot and introduce a closed-loop control strategy to improve the motion accuracy. Originality/value The main contribution of this paper is to present an algorithm to generate follow-the-leader motion of the continuum robot based on DE. This method is suitable for solving new arrangements in the process of following a nonlinear path. Then, it is expected to promote the engineering application of the continuum robot.


Sign in / Sign up

Export Citation Format

Share Document