Toward automatic classification of chemical sensor data from autonomous underwater vehicles

Author(s):  
Michael V. Jakuba ◽  
Daniel Steinberg ◽  
James C. Kinsey ◽  
Dana R. Yoerger ◽  
Richard Camilli ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 44
Author(s):  
Bhargavi Mahesh ◽  
Teresa Scholz ◽  
Jana Streit ◽  
Thorsten Graunke ◽  
Sebastian Hettenkofer

Metal oxide (MOX) sensors offer a low-cost solution to detect volatile organic compound (VOC) mixtures. However, their operation involves time-consuming heating cycles, leading to a slower data collection and data classification process. This work introduces a few-shot learning approach that promotes rapid classification. In this approach, a model trained on several base classes is fine-tuned to recognize a novel class using a small number (n = 5, 25, 50 and 75) of randomly selected novel class measurements/shots. The used dataset comprises MOX sensor measurements of four different juices (apple, orange, currant and multivitamin) and air, collected over 10-minute phases using a pulse heater signal. While high average accuracy of 82.46 is obtained for five-class classification using 75 shots, the model’s performance depends on the juice type. One-shot validation showed that not all measurements within a phase are representative, necessitating careful shot selection to achieve high classification accuracy. Error analysis revealed contamination of some measurements by the previously measured juice, a characteristic of MOX sensor data that is often overlooked and equivalent to mislabeling. Three strategies are adopted to overcome this: (E1) and (E2) fine-tuning after dropping initial/final measurements and the first half of each phase, respectively, (E3) pretraining with data from the second half of each phase. Results show that each of the strategies performs best for a specific number of shots. E3 results in the highest performance for five-shot learning (accuracy 63.69), whereas E2 yields the best results for 25-/50-shot learning (accuracies 79/87.1) and E1 predicts best for 75-shot learning (accuracy 88.6). Error analysis also showed that, for all strategies, more than 50% of air misclassifications resulted from contamination, but E1 was affected the least. This work demonstrates how strongly data quality can affect prediction performance, especially for few-shot classification methods, and that a data-centric approach can improve the results.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


Sign in / Sign up

Export Citation Format

Share Document