Estimating the Center of Mass of Human-Exoskeleton Systems with Physically Coupled Serial Chain

Author(s):  
Rui Huang ◽  
Zhinan Peng ◽  
Siying Guo ◽  
Kecheng Shi ◽  
Chaobin Zou ◽  
...  
Keyword(s):  
Author(s):  
Bingjue Li ◽  
Andrew P. Murray ◽  
David H. Myszka

Any articulated system of rigid bodies defines a Statically Equivalent Serial Chain (SESC). The SESC is a virtual chain that terminates at the center of mass (CoM) of the original system of bodies. A SESC may be generated experimentally without knowing the mass, CoM, or length of each link in the system given that its joint angles and overall CoM may be measured. This paper presents three developments toward recognizing the SESC as a practical modeling technique. Two of the three developments improve utilizing the technique in practical applications where the arrangement of the joints impacts the derivation of the SESC. The final development provides insight into the number of poses needed to create a usable SESC in the presence of data collection errors. First, modifications to a matrix necessary in computing the SESC are proposed. Second, the problem of generating a SESC experimentally when the system of bodies includes a mass fixed in the ground frame are presented and a remedy is proposed for humanoid-like systems. Third, an investigation of the error of the experimental SESC versus the number of data readings collected in the presence of errors in joint readings and CoM data is conducted. By conducting the method on three different systems with various levels of data error, a general form of the function for estimating the error of the experimental SESC is proposed.


Author(s):  
Fan Yang ◽  
Xilun Ding ◽  
Gregory S. Chirikjian

This paper provides a method for modeling the center of mass (COM) of hexapod manipulation systems, which is based on the Statically Equivalent Serial Chain (SESC) model. First, the product of exponentials (POE) formula is used to construct the SESC model for the simple tree-like chain. Then, in order to apply this method to real scenarios, the situation when the robot stands on uneven terrain is studied. In addition, the static grasp constraints for the manipulation and the Jacobian matrix for the COM of the system are analyzed. Moreover, we present a modified tumble stability margin, which considers all of the possible ways that the robot can tumble. Finally, based on these kinematic analyses, a motion control scheme for statically stable manipulation is proposed. The results are validated with simulations.


Author(s):  
Sebastien Cotton ◽  
Andrew Murray ◽  
Philippe Fraisse

This paper proposes a new technique to estimate the center of mass (CoM) of mechanical systems defined by an articulated set of rigid bodies. This technique is based on the use of the statically equivalent serial chain, a serial chain representation on any multi-link branched chain. Through the use of this model, and without any knowledge of each individual body’s CoM or CoM location, a simple method to estimate the mechanical system’s CoM is developed. This method is validated with the CoM estimation of the Hoap-3 humanoid robot. A sensitivity calculation for estimating the CoM in this way is also presented.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Bingjue Li ◽  
Andrew P. Murray ◽  
David H. Myszka

Any articulated system of rigid bodies defines a statically equivalent serial chain (SESC). The SESC is a virtual chain that terminates at the center of mass (CoM) of the original system of bodies. An SESC may be generated experimentally without knowing the mass, CoM, or length of each link in the system given that its joint angles and overall CoM may be measured. This paper presents three developments toward recognizing the SESC as a practical modeling technique. Two of the three developments improve utilizing the technique in practical applications where the arrangement of the joints impacts the derivation of the SESC. The final development provides insight into the number of poses needed to create a usable SESC in the presence of data collection errors. First, modifications to a matrix necessary in computing the SESC are proposed, followed by the experimental validation of SESC modeling. Second, the problem of generating an SESC experimentally when the system of bodies includes a mass fixed in the ground frame are presented and a remedy is proposed for humanoid-like systems. Third, an investigation of the error of the experimental SESC versus the number of data readings collected in the presence of errors in joint readings and CoM data is conducted. By conducting the method on three different systems with various levels of data error, a general form of the function for estimating the error of the experimental SESC is proposed.


Sensors ◽  
2014 ◽  
Vol 14 (9) ◽  
pp. 16955-16971 ◽  
Author(s):  
Alejandro González ◽  
Mitsuhiro Hayashibe ◽  
Vincent Bonnet ◽  
Philippe Fraisse

1994 ◽  
Author(s):  
Marcia Grabowecky ◽  
Lynn C. Robertson ◽  
Anne Treisman

2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


2019 ◽  
Vol 64 (7) ◽  
pp. 583 ◽  
Author(s):  
S. Harabasz

Collisions of heavy nuclei at (ultra-)relativistic energies provide a fascinating opportunity to re-create various forms of matter in the laboratory. For a short extent of time (10-22 s), matter under extreme conditions of temperature and density can exist. In dedicated experiments, one explores the microscopic structure of strongly interacting matter and its phase diagram. In heavy-ion reactions at SIS18 collision energies, matter is substantially compressed (2–3 times ground-state density), while moderate temperatures are reached (T < 70 MeV). The conditions closely resemble those that prevail, e.g., in neutron star mergers. Matter under such conditions is currently being studied at the High Acceptance DiElecton Spectrometer (HADES). Important topics of the research program are the mechanisms of strangeness production, the emissivity of matter, and the role of baryonic resonances herein. In this contribution, we will focus on the important experimental results obtained by HADES in Au+Au collisions at 2.4 GeV center-of-mass energy. We will also present perspectives for future experiments with HADES and CBM at SIS100, where higher beam energies and intensities will allow for the studies of the first-order deconfinement phase transition and its critical endpoint.


Sign in / Sign up

Export Citation Format

Share Document