Dynamic Simulations of Thermal Performance of a Building using Various Construction Scenarios in Morocco

Author(s):  
Said Hamdaoui ◽  
Mustapha Mahdaoui ◽  
Rachid El Alaiji ◽  
Amine Allouhi ◽  
Abdelouahad Ait Msaad ◽  
...  
2019 ◽  
Vol 29 ◽  
pp. 1-15
Author(s):  
Juan Carlos Barragán-Medrano ◽  
Norma Alejandra Rodríguez Muñoz ◽  
Mario Najera-Trejo ◽  
Jorge Alberto Escobedo-Bretado ◽  
Ignacio Ramiro Martin-Domínguez ◽  
...  

Four different shapes of a 182 m2 research greenhouse were analyzed using dynamic simulations. The thermal performance was evaluated using different cover materials at an equal floor area. In developing countries, the selection of the greenhouse shape, structure, and cover material generally is made based on the availability of the materials and considering the initial investment costs. The greenhouse is located on a cold semi-arid (BSk) climate according to the Köppen climate classification. This study aimed to determine the best choice of the greenhouse shape and cover material according to a technical-economic analysis. The analysis was conducted from a technical-economic perspective for this specific climate region. The results show the heating and cooling energy consumption for different cover materials and greenhouse shapes. The economic analysis was made to assess the investment and operative costs through the life span of the greenhouse.


Author(s):  
G. Barigozzi ◽  
S. Ravelli ◽  
M. Maritano ◽  
R. Abram

In this study computational fluid dynamic simulations of a turbine blade with endwall film cooling were compared to measurements of both aerodynamic and thermal performance. The experimental data were collected at low Mach number (Ma2is = 0.3) in a linear cascade arrangement with 7 blades which geometry is typical of first stage high pressure turbine. A junction between the blade hub and the platform is provided by a 3D fillet. Coolant is injected through ten cylindrical holes distributed along the blade pressure side. Coolant to mainstream mass flow ratio was set to assure an inlet blowing ratio of M1 = 2.4 and M1 = 3.2. The simulations were carried out using the Shear Stress Transport (SST) k-ω turbulence model. Numerical predictions were compared against experimentally measured secondary flows and endwall film cooling effectiveness, at different injection conditions. Simulation results agreed with the experiments for what concerns the general shape and the location of secondary flows. However, some limitations in the modeling were highlighted when going into the details of loss computation and vortex structure. Predictions overestimated both secondary and midspan blade wake losses. Moreover, the effect of the fillet on the aerodynamic flow features was not fully captured. Predicted film cooling results showed the sweeping of coolant across the passage in agreement with experiments even though jets persistency was higher than that measured. Levels of adiabatic effectiveness were generally well simulated.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2019 ◽  
Vol 50 (8) ◽  
pp. 757-772 ◽  
Author(s):  
Yicang Huang ◽  
Hui Li ◽  
Shengnan Shen ◽  
Yongbo Xue ◽  
Mingliang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document