Aerosol deposition for ceramic thick film formation at room temperature

Author(s):  
T. Tsurumi ◽  
J. Ma ◽  
J. Li ◽  
H. Kakemoto ◽  
D. Tsukiori ◽  
...  
2017 ◽  
Vol 10 (06) ◽  
pp. 1750073 ◽  
Author(s):  
Michaela Schubert ◽  
Jaroslaw Kita ◽  
Christian Münch ◽  
Ralf Moos

The study compares thick-film NTC thermistor devices, produced by the screen-printing (and firing) technique and by the Aerosol Deposition Method (ADM) at room temperature. The devices are compared with respect to film quality (optical, mechanical) and to the negative temperature coefficient of resistance (NTCR) parameters [Formula: see text] and [Formula: see text]. While the screen-printed films are porous, the Aerosol Deposited (AD) films are characterized by high tightness, mechanical stability, and a production at room temperature. The electrical analysis shows that the AD films reach the [Formula: see text]- and [Formula: see text]-values of bulk NTCRs from literature after a moderate tempering step below 400[Formula: see text]C in air. The screen-printed films show [Formula: see text]-values that are comparable to the values of bulk NTCRs from literature and [Formula: see text]-values that are significantly higher.


Author(s):  
Seunggon Choi ◽  
Ji-Ho Lim ◽  
Eun-Young Kang ◽  
Hyungsun Kim ◽  
Young-Min Kong ◽  
...  

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 59
Author(s):  
Deepak Rajaram Patil ◽  
Venkateswarlu Annapureddy ◽  
J. Kaarthik ◽  
Atul Thakre ◽  
Jun Akedo ◽  
...  

Conventional thin-film processing techniques remain inadequate for obtaining superior dense ceramic thick films. The incompatibility of ceramic films prepared via other methods, such as screen printing, spin coating, and sputtering, is a major obstacle in the fabrication of thick film-based ceramic electronic components. The granule spray in vacuum (GSV) processes and aerosol deposition (AD) are important coating approaches for forming dense ceramic thick films featuring nanoscale crystallite structures at room temperature, which offer excellent material properties and facilitate cost-effective production. AD ceramic coatings require the acceleration of solid-state submicron ceramic particles via gas streams with a velocity of a few hundred meters per second, which are then wedged onto a substrate. This process is economical and particularly useful for the fabrication of piezoelectric thick film-based microactuators, energy harvesters, sensors, and optoelectronic devices. More recently, the GSV technique was improved to achieve more uniform and homogeneous film deposition after AD. This review article presents a detailed overview of the AD and GSV processes for piezoelectric thick films in terms of recent scientific and technological applications.


2016 ◽  
Vol 45 (43) ◽  
pp. 17312-17318 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Dasom Park ◽  
Nabeen K. Shrestha ◽  
Jinho Chang ◽  
Cheol-Woo Yi ◽  
...  

An aqueous solution based synthetic method for binder-free Ag2Te thin films using ion exchange induced chemical transformation of Ag/AgxO thin films.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000406-000410
Author(s):  
Hiroki TSUDA ◽  
Jun AKEDO ◽  
Shingo HIROSE ◽  
Keishi OHASHI

The possibility and mechanical improvement of the infrared ceramic coatings fabricated on fluoride substrates at room temperature by aerosol deposition (AD) were investigated aiming to optical components for infrared applications and devices. The yttria coating possibility fabricated on barium fluoride substrates by the AD process was found by adjusting one of the deposition conditions. The optical and mechanical properties of the fabricated ceramic coatings, which are important in practical applications, were evaluated by transmittance and hardness measurements respectively. The mechanical hardness of the fabricated yttria single coatings was increased to 4 times higher than that of the barium fluoride substrates. Furthermore, by an additional layer on a barium fluoride substrate, the mechanical properties of the fabricated multi-coatings including an upper yttria layer were improved from that of the single yttria coating on the barium fluoride substrate, retaining the IR transmittance of the single yttria coating at the wavelength of 10μm.


Sign in / Sign up

Export Citation Format

Share Document