A terahertz frequency selective surface band-pass filter

Author(s):  
Pei Wang ◽  
Hongwei Gao
2011 ◽  
Vol 328-330 ◽  
pp. 1503-1506
Author(s):  
Hong Yan Jia ◽  
Xiao Guo Feng

To realize the functions of infrared transparent as well as radar double– pass Band, A Y loop and Y slot compound element Frequency Selective Surface (FSS) structure is proposed, which takes an infrared transparent inductive mesh as a substrate. The proposed structure is analyzed based on Galerkin spectral method. The transitivity of infrared (3um-5um) as well as the radar double passed band with two resonance frequencies (31GHz and 54GHz) is discussed. The result reveals that this structure has function of infrared transparent as well as stable radar double–band filter with effective shielding effect on S-band and C-band radar electromagnetic waves. The design with multiple passband is suitable for radar/IR composite guidance and it also offers a kind of new thinking way of design for multi-mode compound guidance systems.


Author(s):  
Marwa Daghari ◽  
Hedi Sakli

In this paper, a metamaterial structure based on Frequency Selective Surface (FSS) cell is proposed to achieve an isotropic band-pass filtering response. This filter consists of a planar layer formed by a 3×3 metamaterials cell array with transmittive filtering behavior at 3.5 GHz. This design with 45 mm × 45 mm dimension is then integrated in close proximity at distance of 10 mm with an Ultra Wide Band (UWB) antenna to enhance it’ s performances around a 3.5 GHz operating frequency. Simulation results ensure that filter geometry provides the advantage of polarization independency and also exhibits the angular stability up to 45◦ for both Transverse Electric (TE) and Transverse magnetic (TM) modes. More importantly, enhancement in antenna radiation pattern characteristics is illustrated when the planar FSS layer is integrated at a small distance from the radiator. Moreover, antenna gain was improved to 3.22 dBi, adaptation of antenna port (S11) was increased to -53.26 dB and antenna bandwidth reduction to 1.7 GHz is also detected. All these performances make the proposed design as a good choice used to shield signals in UWB wireless applications especially for connected object in 5G.


Author(s):  
Alfredo Gomes Neto ◽  
Jefferson Costa e Silva ◽  
Alexandre Jean Rene Serres ◽  
Marina de Oliveira Alencar ◽  
Ianes Barbosa Grecia Coutinho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document