Segmentation of thalamic nuclei based on tensorial morphological gradient of diffusion tensor fields

Author(s):  
Leticia Rittner ◽  
Roberto A. Lotufo ◽  
Jennifer Campbell ◽  
G. Bruce Pike
2009 ◽  
Vol 13 (4) ◽  
pp. 580-597 ◽  
Author(s):  
Ravi Bansal ◽  
Lawrence H. Staib ◽  
Dongrong Xu ◽  
Andrew F. Laine ◽  
Jun Liu ◽  
...  

Neurosurgery ◽  
2011 ◽  
Vol 70 (1) ◽  
pp. 162-169 ◽  
Author(s):  
Jonathan A. Hyam ◽  
Sarah L.F. Owen ◽  
Morten L. Kringelbach ◽  
Ned Jenkinson ◽  
John F. Stein ◽  
...  

Abstract BACKGROUND Targeting of the motor thalamus for the treatment of tremor has traditionally been achieved by a combination of anatomical atlases and neuroimaging, intraoperative clinical assessment, and physiological recordings. OBJECTIVE To evaluate whether thalamic nuclei targeted in tremor surgery could be identified by virtue of their differing connections with noninvasive neuroimaging, thereby providing an extra factor to aid successful targeting. METHODS Diffusion tensor tractography was performed in 17 healthy control subjects using diffusion data acquired at 1.5-T magnetic resonance imaging (60 directions, b value = 1000 s/mm2, 2 × 2 × 2-mm3 voxels). The ventralis intermedius (Vim) and ventralis oralis posterior (Vop) nuclei were identified by a stereotactic neurosurgeon, and these sites were used as seeds for probabilistic tractography. The expected cortical connections of these nuclei, namely the primary motor cortex (M1) and contralateral cerebellum for the Vim and M1, the supplementary motor area, and dorsolateral prefrontal cortex for the Vop, were determined a priori from the literature. RESULTS Tractogram signal intensity was highest in the dorsolateral prefrontal cortex and supplementary motor area after Vop seeding (P > .001, Wilcoxon signed-rank tests). High intensity was seen in M1 after seeding of both nuclei but was greater with Vim seeding (P > .001). Contralateral cerebellar signal was highest with Vim seeding (P > .001). CONCLUSION Probabilistic tractography can depict differences in connectivity between intimate nuclei within the motor thalamus. These connections are consistent with published anatomical studies; therefore, tractography may provide an important adjunct in future targeting in tremor surgery.


2021 ◽  
Vol 11 ◽  
Author(s):  
Moein Amin ◽  
Daniel Ontaneda

Multiple sclerosis (MS) produces demyelination and degeneration in both gray and white matter. Both cortical and deep gray matter injury is observed during the course of MS. Among deep gray matter structures, the thalamus has received special attention, as it undergoes volume loss in different MS subtypes and is involved in the earliest form of the disease, radiologically isolated syndrome. The thalamus plays an important role as an information relay center, and involvement of the thalamus in MS has been associated with a variety of clinical manifestations in MS, including fatigue, movement disorders, pain, and cognitive impairment (CI). Similar to thalamic volume loss, CI is seen from the earliest stages of MS and is potentially one of the most debilitating manifestations of the disease. The thalamus, particularly the dorsomedial nucleus as part of the basolateral limbic circuit and anterior thalamic nuclei through connections with the prefrontal cortex, has been shown to be involved in CI. Specifically, several cognitive performance measures such as processing speed and memory correlate with thalamic volume. Thalamic atrophy is one of the most important predictors of CI in MS, and both thalamic volume, diffusion tensor imaging measures, and functional activation correlate with the degree of CI in MS. Although the exact mechanism of thalamic atrophy is not well-understood, it is hypothesized to be secondary to degeneration following white matter injury resulting in secondary neurodegeneration and neuronal loss. The thalamus may represent an ideal biomarker for studies aiming to test neuroprotective or restorative therapies aimed at cognition.


Sign in / Sign up

Export Citation Format

Share Document