A new compact low-power high slew rate class AB CMOS buffer

Author(s):  
A. Torralba ◽  
R.G. Carvajal ◽  
J. Galan ◽  
J. Ramirez-Angulo
Keyword(s):  
Class Ab ◽  
Author(s):  
Ah-Reum Kim ◽  
Hyoung-Rae Kim ◽  
Yoon-Suk Park ◽  
Yoon-Kyung Choi ◽  
Bai-Sun Kong
Keyword(s):  
Class Ab ◽  

Author(s):  
Jia-Hui Wang ◽  
Jing-Chuan Qiu ◽  
Hao-Yuan Zheng ◽  
Chien-Hung Tsai ◽  
Chen-Yu Wang ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2018
Author(s):  
Chang-Ho An ◽  
Bai-Sun Kong

A high-slew-rate, low-power, CMOS, rail-to-rail buffer amplifier for large flat-panel-display (FPD) applications is proposed. The major circuit of the output buffer is a rail-to-rail, folded-cascode, class-AB amplifier which can control the tail current source using a compact, novel, adaptive biasing scheme. The proposed output buffer amplifier enhances the slew rate throughout the entire rail-to-rail input signal range. To obtain a high slew rate and low power consumption without increasing the static current, the tail current source of the adaptive biasing generates extra current during the transition time of the output buffer amplifier. A column driver IC incorporating the proposed buffer amplifier was fabricated in a 1.6-μm 18-V CMOS technology, whose evaluation results indicated that the static current was reduced by up to 39.2% when providing an identical settling time. The proposed amplifier also achieved up to 49.1% (90% falling) and 19.9 % (99.9% falling) improvements in terms of settling time for almost the same static current drawn and active area occupied.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Sign in / Sign up

Export Citation Format

Share Document