scholarly journals A 0.3 V Rail-to-Rail Ultra-Low-Power OTA with Improved Bandwidth and Slew Rate

2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.

Author(s):  
M.R. Valero ◽  
S. Celma ◽  
N. Medrano

This paper presents an ultra low power rail-to-rail input/output operational amplifier (OpAmp) designed in a low cost 0.18 μm CMOS technology. In this OpAmp, rail-to-rail input operation is enabled by using complementary input pairs with gm control. To maximize the output swing a rail-to-rail output stage is employed. For low-voltage low-power operation, the operating transistors in the input and output stage are biased in the sub-threshold region. The simulated DC open loop gain is 51 dB, and the slew-rate is 0.04 V/μs with a 10 pF capacitive load connected to each of the amplifier outputs. For the same load, the simulated unity gain frequency is 131 kHz with a 64º phase margin. A common-mode feed-forward circuit (CMFF) increases CMRR, reducing drastically the variations in the output common mode voltage and keeping the DC gain almost constant. In fact, their relative error remains below 1.2 % for a (-20ºC, +120ºC) temperature span. In addition, the proposed OpAmp is very simple and consumes only 4 μW at 0.8 V supply.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1156
Author(s):  
Lorenzo Benvenuti ◽  
Alessandro Catania ◽  
Giuseppe Manfredini ◽  
Andrea Ria ◽  
Massimo Piotto ◽  
...  

The design of ultra-low voltage analog CMOS integrated circuits requires ad hoc solutions to counteract the severe limitations introduced by the reduced voltage headroom. A popular approach is represented by inverter-based topologies, which however may suffer from reduced finite DC gain, thus limiting the accuracy and the resolutions of pivotal circuits like analog-to-digital converters. In this work, we discuss the effects of finite DC gain on ultra-low voltage ΔΣ modulators, focusing on the converter gain error. We propose an ultra-low voltage, ultra-low power, inverter-based ΔΣ modulator with reduced finite-DC-gain sensitivity. The modulator employs a two-stage, high DC-gain, switched-capacitor integrator that applies a correlated double sampling technique for offset cancellation and flicker noise reduction; it also makes use of an amplifier that implements a novel common-mode stabilization loop. The modulator was designed with the UMC 0.18 μm CMOS process to operate with a supply voltage of 0.3 V. It was validated by means of electrical simulations using the CadenceTM design environment. The achieved SNDR was 73 dB, with a bandwidth of 640 Hz, and a clock frequency of 164 kHz, consuming only 200.5 nW. It achieves a Schreier Figure of Merit of 168.1 dB. The proposed modulator is also able to work with lower supply voltages down to 0.15 V with the same resolution and a lower power consumption despite of a lower bandwidth. These characteristics make this design very appealing in sensor interfaces powered by energy harvesting sources.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


2011 ◽  
Vol 20 (07) ◽  
pp. 1277-1286 ◽  
Author(s):  
MERIH YILDIZ ◽  
SHAHRAM MINAEI ◽  
EMRE ARSLAN

This work presents a high-slew rate rail-to-rail buffer amplifier, which can be used for flat panel displays. The proposed buffer amplifier is composed of two transconductance amplifiers, two current comparators and a push-pull output stage. Phase compensation technique is also used to improve the phase margin value of the proposed buffer amplifier for different load capacitances. Post-layout simulations of the proposed buffer amplifier are performed using 0.35 μm AMS CMOS process parameters and 3.3 V power supply. The circuit is tested under a 600 pF capacitive load. An average settling time of 0.85 μs under a full voltage swing is obtained, while only 3 μA quiescent current is drawn from the power supply. Monte Carlo analysis is also added to show the process variation effects on the circuit.


Author(s):  
Ming-Cheng Liu ◽  
Paul C.-P. Chao ◽  
Soh Sze Khiong

In this paper a low power all-digital clock and data recovery (ADCDR) with 1Mhz frequency has been proposed. The proposed circuit is designed for optical receiver circuit on the battery-less photovoltaic IoT (Internet of Things) tags. The conventional RF receiver has been replaced by the visible light optical receiver for battery-less IoT tags. With this proposed ADCDR a low voltage, low power consumption & tiny IoT tags can be fabricated. The proposed circuit achieve the maximum bandwidth of 1MHz, which is compatible with the commercial available LED and light sensor. The proposed circuit has been fabricated in TSMC 0.18um 1P6M standard CMOS process. Experimental results show that the power consumption of the optical receiver is approximately 5.58uW with a supply voltage of 1V and the data rate achieves 1Mbit/s. The lock time of the ADCDR is 0.893ms with 3.31ns RMS jitter period.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 928 ◽  
Author(s):  
Taehoon Kim ◽  
Sivasundar Manisankar ◽  
Yeonbae Chung

Subthreshold SRAMs profit various energy-constrained applications. The traditional 6T SRAMs exhibit poor cell stability with voltage scaling. To this end, several 8T to 16T cell designs have been reported to improve the stability. However, they either suffer one of disturbances or consume large bit-area overhead. Furthermore, some cell options have a limited write-ability. This paper presents a novel 8T static RAM for reliable subthreshold operation. The cell employs a fully differential scheme and features cross-point access. An adaptive cell bias for each operating mode eliminates the read disturbance and enlarges the write-ability as well as the half-select stability in a cost-effective small bit-area. The bit-cell also can support efficient bit-interleaving. To verify the SRAM technique, a 32-kbit macro incorporating the proposed cell was implemented with an industrial 180 nm low-power CMOS process. At 0.4 V and room temperature, the proposed cell achieves 3.6× better write-ability and 2.6× higher dummy-read stability compared with the commercialized 8T cell. The 32-kbit SRAM successfully operates down to 0.21 V (~0.27 V lower than transistor threshold voltage). At its lowest operating voltage, the sleep-mode leakage power of entire SRAM is 7.75 nW. Many design results indicate that the proposed SRAM design, which is applicable to an aggressively-scaled process, might be quite useful in realizing cost-effective robust ultra-low voltage SRAMs.


2018 ◽  
Vol 27 (13) ◽  
pp. 1850206 ◽  
Author(s):  
Qingshan Yang ◽  
Peiqing Han ◽  
Niansong Mei ◽  
Zhaofeng Zhang

A 16.4[Formula: see text]nW, sub-1[Formula: see text]V voltage reference for ultra-low power low voltage applications is proposed. This design reduces the operating voltage to 0.8[Formula: see text]V by a BJT voltage divider and decreases the silicon area considerably by eliminating resistors. The PTAT and CTAT are based on SCM structures and a scaled-down [Formula: see text], respectively, to improve the process insensitivity. This work is fabricated in 0.18[Formula: see text][Formula: see text]m CMOS process with a total area of 0.0033[Formula: see text]mm2. Measured results show that it works properly for supply voltage from 0.8[Formula: see text]V to 2[Formula: see text]V. The reference voltage is 467.2[Formula: see text]mV with standard deviation ([Formula: see text]) being 12.2 mV and measured TC at best is 38.7[Formula: see text]ppm/[Formula: see text]C ranging from [Formula: see text]C to 60[Formula: see text]C. The total power consumption is 16.4[Formula: see text]nW under the minimum supply voltage at 27[Formula: see text]C.


Sign in / Sign up

Export Citation Format

Share Document