Motion Information and Coding Mode Reuse for MPEG-2 to H.264 Transcoding

Author(s):  
Zhi Zhou ◽  
Shijun Sun ◽  
Shawmin Lei ◽  
Ming-Ting Sun
2019 ◽  
Vol 13 (1) ◽  
pp. 34-43 ◽  
Author(s):  
Hongwei Lin ◽  
Xiaohai He ◽  
Linbo Qing ◽  
Shan Su ◽  
Shuhua Xiong

2009 ◽  
Vol 129 (5) ◽  
pp. 977-984
Author(s):  
Atsutoshi Shimeno ◽  
Seiichi Uchida ◽  
Ryo Kurazume ◽  
Rin-ichiro Taniguchi ◽  
Tsutomu Hasegawa

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3722
Author(s):  
Byeongkeun Kang ◽  
Yeejin Lee

Motion in videos refers to the pattern of the apparent movement of objects, surfaces, and edges over image sequences caused by the relative movement between a camera and a scene. Motion, as well as scene appearance, are essential features to estimate a driver’s visual attention allocation in computer vision. However, the fact that motion can be a crucial factor in a driver’s attention estimation has not been thoroughly studied in the literature, although driver’s attention prediction models focusing on scene appearance have been well studied. Therefore, in this work, we investigate the usefulness of motion information in estimating a driver’s visual attention. To analyze the effectiveness of motion information, we develop a deep neural network framework that provides attention locations and attention levels using optical flow maps, which represent the movements of contents in videos. We validate the performance of the proposed motion-based prediction model by comparing it to the performance of the current state-of-art prediction models using RGB frames. The experimental results for a real-world dataset confirm our hypothesis that motion plays a role in prediction accuracy improvement, and there is a margin for accuracy improvement by using motion features.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4108
Author(s):  
Man Chen ◽  
Maojun Li ◽  
Yiwei Li ◽  
Wukun Yi

The detection of rock particle motion information is the basis for revealing particle motion laws and quantitative analysis. Such a task is crucial in guiding engineering construction, preventing geological disasters, and verifying numerical models of particles. We propose a machine vision method based on video instance segmentation (VIS) to address the motion information detection problem in rock particles under a vibration load. First, we designed a classification loss function based on Arcface loss to improve the Mask R-CNN. This loss function introduces an angular distance based on SoftMax loss that distinguishes the objects and backgrounds with higher similarity. Second, this method combines the abovementioned Mask R-CNN and Deep Simple Online and Real-time Tracking (Deep SORT) to perform rock particle detection, segmentation, and tracking. Third, we utilized the equivalent ellipse characterization method for segmented particles, integrating with the proportional calibration algorithm to test the translation and detecting the rotation by calculating the change in the angle of the ellipse’s major axis. The experimental results show that the improved Mask R-CNN obtains an accuracy of 93.36% on a self-created dataset and also has some advantages on public datasets. Combining the improved Mask R-CNN and Deep SORT could fulfill the VIS with a low ID switching rate while successfully detecting movement information. The average detection errors of translation and rotation are 5.10% and 14.49%, respectively. This study provides an intelligent scheme for detecting movement information of rock particles.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4958
Author(s):  
Hicham Hadj-Abdelkader ◽  
Omar Tahri ◽  
Houssem-Eddine Benseddik

Photometric moments are global descriptors of an image that can be used to recover motion information. This paper uses spherical photometric moments for a closed form estimation of 3D rotations from images. Since the used descriptors are global and not of the geometrical kind, they allow to avoid image processing as features extraction, matching, and tracking. The proposed scheme based on spherical projection can be used for the different vision sensors obeying the central unified model: conventional, fisheye, and catadioptric. Experimental results using both synthetic data and real images in different scenarios are provided to show the efficiency of the proposed method.


1996 ◽  
Vol 55 (3) ◽  
pp. 339-350 ◽  
Author(s):  
Jong-Bae Lee ◽  
Seong-Dae Kim

Sign in / Sign up

Export Citation Format

Share Document