scholarly journals Thermal-aware system-level modeling and management for Multi-Processor Systems-on-Chip

Author(s):  
Francesco Zanini ◽  
David Atienza ◽  
Luca Benini ◽  
Giovanni De Micheli
Author(s):  
Kari Tiensyrjä ◽  
Miroslav Cupak ◽  
Kostas Masselos ◽  
Marko Pettissalo ◽  
Konstantinos Potamianos ◽  
...  

2021 ◽  
Vol 26 (2) ◽  
pp. 172-183
Author(s):  
E.S. Yanakova ◽  
◽  
G.T. Macharadze ◽  
L.G. Gagarina ◽  
A.A. Shvachko ◽  
...  

A turn from homogeneous to heterogeneous architectures permits to achieve the advantages of the efficiency, size, weight and power consumption, which is especially important for the built-in solutions. However, the development of the parallel software for heterogeneous computer systems is rather complex task due to the requirements of high efficiency, easy programming and the process of scaling. In the paper the efficiency of parallel-pipelined processing of video information in multiprocessor heterogeneous systems on a chip (SoC) such as DSP, GPU, ISP, VDP, VPU and others, has been investigated. A typical scheme of parallel-pipelined processing of video data using various accelerators has been presented. The scheme of the parallel-pipelined video data on heterogeneous SoC 1892VM248 has been developed. The methods of efficient parallel-pipelined processing of video data in heterogeneous computers (SoC), consisting of the operating system level, programming technologies level and the application level, have been proposed. A comparative analysis of the most common programming technologies, such as OpenCL, OpenMP, MPI, OpenAMP, has been performed. The analysis has shown that depend-ing on the device finite purpose two programming paradigms should be applied: based on OpenCL technology (for built-in system) and MPI technology (for inter-cell and inter processor interaction). The results obtained of the parallel-pipelined processing within the framework of the face recognition have confirmed the effectiveness of the chosen solutions.


2014 ◽  
pp. 478-512
Author(s):  
Mihkel Tagel ◽  
Peeter Ellervee ◽  
Gert Jervan

Technology scaling into subnanometer range will have impact on the manufacturing yield and quality. At the same time, complexity and communication requirements of systems-on-chip (SoC) are increasing, thus making a SoC designer goal to design a fault-free system a very difficult task. Network-on-chip (NoC) has been proposed as one of the alternatives to solve some of the on-chip communication problems and to address dependability at various levels of abstraction. This chapter concentrates on system-level design issues of NoC-based systems. It describes various methods proposed for NoC architecture analysis and optimization, and gives an overview of different system-level fault tolerance methods. Finally, the chapter presents a system-level design framework for performing design space exploration for dependable NoC-based systems.


Sign in / Sign up

Export Citation Format

Share Document